`

СПЕЦИАЛЬНЫЕ
ПАРТНЕРЫ
ПРОЕКТА

Архив номеров

Best CIO

Определение наиболее профессиональных ИТ-управленцев, лидеров и экспертов в своих отраслях

Человек года

Кто внес наибольший вклад в развитие украинского ИТ-рынка.

Продукт года

Награды «Продукт года» еженедельника «Компьютерное обозрение» за наиболее выдающиеся ИТ-товары

 

Разработан эффективный лазер для кремниевых чипов

0 
 

Разработан эффективный лазер для кремниевых чипов

Учёные давно ищут пути интеграции в кремниевые микросхемы лазеров, поскольку свет позволяет передавать данные быстрее, чем электрический ток. Однако сам кремний относится к непрямым полупроводникам и непригоден для использования в лазере. Вместо него для этого применяют сложные полупроводники III-V групп. По структуре кристаллической решётки они сильно отличаются от кремния, который относится к элементам четвёртой (IV) группы. Поэтому лазеры для микросхем приходится изготавливать отдельно, что значительно удорожает конструкцию.

Ближе всего к решению этой проблемы подошли сотрудники исследовательского центра в Юлихе (Германия). В совместном проекте с Парижским центром нанотехнологий (C2N), французским чипмейкером STMicroelectronics и CEA-LETI Grenoble, они разработали КМОП-совместимый полупроводниковый лазер, сравнимый по эффективности с традиционными лазерами на арсениде галлия, смонтированными на кремниевой подложке.

Германий и олово — оба элемента, входящие в новый лазер, входят в ту же четвертую группу, что и кремний, поэтому интеграция может происходить прямо в процессе изготовления кремниевого чипа. Для этого в Юлихе разработан и запатентован эпитаксиальный процесс, используемый исследовательскими группами по всему миру.

«Чистый германий по своей природе является непрямым полупроводником, как и кремний. Высокая концентрация олова — то, что превращает его в прямой полупроводник для лазерного источника», — объясняет доктор Дэн Бука (Dan Buca), руководитель рабочей группы в Институте Питера Грюнберга в Юлихе (PGI-9). Именно здесь, в 2015 г. Было впервые продемонстрировано лазерное излучение для системы GeSn.

Ключом к успеху стало высокое содержание олова, намного превосходящее предел растворимости. Дальнейший рост его концентрации увеличивает рабочую температуру лазера (вплоть до 0 °С), однако при этом падает и эффективность, то есть возрастают энергозатраты на накачку.

Поэтому, учёные постарались уменьшить концентрацию олова, компенсировав это напряжением материала, что попутно существенно улучшило его оптические свойства. В новом лазере содержание олова снижено до 5% (с 14%), а требуемая плотность энергии накачки уменьшилась до 0,8 кВт/см2 (с 300 кВт/см2).

Устройство, о котором рассказывает публикация в Nature Photonics, стало первым лазером на полупроводниках IV группы, способным функционировать не только в импульсном, но и в непрерывном режиме. Оно демонстрирует реальность перспективы получения лазера с электронной накачкой для промышленных приложений, работающего при комнатных температурах. Однако пока созданная в Юлихе система возбуждается только оптическим способом и при температурах не выше –140 градусов Цельсия.

Новый лазер излучает в инфракрасном диапазоне (2-4 мкм) благодаря чему наряду с передачей данных может, в принципе, применяться в широком круге других приложений: от систем ночного видения до газовых датчиках для мониторинга окружающей среды и состояния больного.


Вы можете подписаться на наш Telegram-канал для получения наиболее интересной информации

0 
 

Напечатать Отправить другу

Читайте также

 
 
Реклама

  •  Home  •  Рынок  •  ИТ-директор  •  CloudComputing  •  Hard  •  Soft  •  Сети  •  Безопасность  •  Наука  •  IoT