`

СПЕЦИАЛЬНЫЕ
ПАРТНЕРЫ
ПРОЕКТА

Архив номеров

Best CIO

Определение наиболее профессиональных ИТ-управленцев, лидеров и экспертов в своих отраслях

Человек года

Кто внес наибольший вклад в развитие украинского ИТ-рынка.

Продукт года

Награды «Продукт года» еженедельника «Компьютерное обозрение» за наиболее выдающиеся ИТ-товары

 

Управляемые кванты магнитного потока в сверхпроводниках могут стать новыми элементами суперкомпьютеров

0 
 

Группа исследователей из МФТИ и Университета Бордо провели уникальный опыт по манипуляции одиночными вихрями Абрикосова в сверхпроводнике оптическим методом. В статье, опубликованной в Nature Communications, учёные говорят о возможности создания новых квантовых логических элементов для суперкомпьютеров.

Явление сверхпроводимости, или отсутствия электрического сопротивления, наблюдается во многих материалах при низких температурах: от −273 до −70 градусов по Цельсию. Переход в сверхпроводящее состояние сопровождается вытеснением магнитного поля из объёма сверхпроводника. Вытеснение может быть как полным (магнитное поле внутри тела равно нулю), так и неполным.

Управляемые кванты магнитного потока в сверхпроводниках могут стать новыми элементами квантовых компьютеров

Справа — одиночные вихри, слева — аббревиатура «Abrikosov Vortices»

Эффект неполного вытеснения был объяснён в 1957 году Алексеем Абрикосовым, за что в 2003 году он был удостоен Нобелевской премии. Материалы, в которых вытеснение является неполным, получили название сверхпроводников второго рода. Помимо этого Абрикосов показал, что проникновение поля возможно только небольшими порциями — квантами магнитного потока. Увеличение магнитного поля сопровождается рождением в сверхпроводнике кольцевых токов — вихрей Абрикосова.

«Сверхпроводники второго рода используются повсеместно: это и медицина, и энергетика, и многие другие отрасли промышленности. «Вихревая материя» в свою очередь определяет свойства сверхпроводников. Поэтому контроль над ней и её изучение — важнейшие задачи современной физики», — заявил сотрудник лаборатории топологических квантовых явлений в сверхпроводящих системах МФТИ Иван Вещунов, один из авторов статьи.

Для передвижения вихрей учёные использовали сфокусированный лазерный пучок. Вихри Абрикосова имеют тенденцию смещаться в зоны с более высокой температурой — таковыми являлись прогретые лазером области тонких плёнок ниобия, охлаждённых до температуры −268 градусов по Цельсию. Важным моментом является тот факт, что при перегреве сверхпроводимость в образце разрушается, поэтому необходимо очень точно регулировать интенсивность лазерного излучения.

Так как вихри являются носителями элементарного кванта магнитного потока, с их помощью можно создавать различные конфигурации магнитного поля для физических исследований. Одну из таких конфигураций использует сама природа: при определённом магнитном поле вихри сами выстраиваются в виде треугольной решётки. Сдвигая вихри, можно получить новые типы решёток или вихревых линз.

По словам авторов, одной из областей применения исследованного процесса может стать разработка оптических систем управления быстрой одноквантовой логикой (БОК-логикой). Она представляет одно из направлений развития квантовых компьютеров. Эта технология считается самой перспективной для создания сверхбыстрой памяти для квантовых компьютеров. На данный момент элементы БОК-логики используются в цифро-аналоговых и аналого-цифровых преобразователях, сверхточных магнитометрах, элементах памяти. Существуют и прототипы вычислительных машин, например американский компьютер FLUX-1. Однако управление схемами БОК-логики в них в основном реализуется с помощью импульсов электрического тока. Переход к оптическому управлению — одно из направлений, в котором будут развиваться сверхпроводящие системы.

Физикам ещё предстоит выяснить, как повышение температуры приводит к срыву вихрей с места, исследовать свойства решёток, которые они образуют, разобраться в их динамических свойствах. Все эти аспекты являются определяющими для понимания физики сверхпроводников и для возможности конструирования принципиально новых элементов микроэлектроники на их основе.

Все про современные облачные технологии!
Не пропустите очередную сессию докладов на онлайн-конференции Google Cloud Next '20 OnAir, которая проходит до 30 октября!

0 
 

Напечатать Отправить другу

Читайте также

 

Slack подает жалобу на Microsoft и требует антимонопольного расследования от ЕС

 
Реклама

  •  Home  •  Рынок  •  ИТ-директор  •  CloudComputing  •  Hard  •  Soft  •  Сети  •  Безопасность  •  Наука  •  IoT