Открыта возможность создания быстрых «плазмонных» чипов

10 август, 2015 - 10:05

Открыта возможность создания быстрых «плазмонных» чипов


Ученые из лаборатории нанооптики и плазмоники центра наноразмерной оптоэлектроники Московского физико-технического института разработали новый метод передачи данных, который позволит уменьшить размеры оптических и оптоэлектронных элементов и увеличить быстродействие компьютеров в десятки раз. Они нашли способ избавиться от потерь энергии при использовании поверхностных плазмонов в оптических устройствах, — говорится в статье, опубликованной в журнале Optics Express.

«Поверхностные плазмон-поляритоны уже предлагались на роль носителей информации при передаче данных, однако проблема состояла в том, что сигнал крайне быстро затухал при распространении по волноводам. Нам удалось решить эту проблему», — говорит руководитель исследования Дмитрий Федянин.

Современная электроника основана на использовании электронов в качестве носителей информации, однако они перестают отвечать современным требованиям: классические медные провода и дорожки на чипах уже не могут передавать информацию с достаточной для современных процессоров скоростью. Это уже сегодня ограничивает рост производительности микропроцессоров, и для поддержания закона Мура требуется внедрение принципиально новых технологий.

Открыта возможность создания быстрых «плазмонных» чипов


Переход от электрических импульсов к оптическим может решить эту проблему. Высокая частота оптического диапазона (это сотни терагерц) позволяет передавать и обрабатывать больше данных, а значит, повысить быстродействие. Оптоволоконные технологии широко используются в коммуникационных сетях, но использование света в процессорах и логических элементах наталкивается на проблему дифракционного предела: размеры волноводов и других оптических элементов не могут быть значительно меньше длины волны. Для ближнего инфракрасного излучения, которое используется для передачи данных, это микроны, что никак не соответствует требованиям к современной электронике. Логические элементы «обычных» современных процессоров имеют размеры в десятки нанометров. Оптическая электроника может стать конкурентоспособной, если удастся «сжать» свет до этого масштаба.

Обойти дифракционный предел становится возможным, если перейти от фотонов к поверхностным плазмон-поляритонам — коллективным возбуждениям, представляющим собой взаимодействие между фотонами и колебаниями электронов в металле на границе между металлом и диэлектриком. В отличие от объемных световых волн, поверхностные поляритоны «держатся» за границу раздела двух сред, являясь поверхностными электромагнитными волнами. Это позволяет перейти от привычной трехмерной оптики к двумерной.

«Грубо говоря, фотон в пространстве занимает определенный объем, порядка длины волны света. Мы можем “сжать” его, преобразовав в поверхностный плазмон-поляритон. Соответственно, используя такой подход, удается повысить степень интеграции и снизить размеры оптических элементов. Но у этого замечательного решения, к сожалению, есть обратная сторона. Для того, чтобы существовал поверхностный плазмон-поляритон, нужен металл, точнее электронный газ в нем. А это влечет за собой запредельно высокие Джоулевы потери, подобные тем, что мы имеем, пропуская постоянный ток по металлическим проводам, но только на оптических частотах», — говорит Федянин.
По его словам, из-за поглощения в металле энергия плазмонов на расстоянии около миллиметра падает в миллиарды раз, что фактически лишает смысла попытки использовать их на практике.

«Наша идея состоит в том, чтобы скомпенсировать потери, закачивая дополнительную энергию в поверхностные плазмон-поляритоны. Если мы хотим интегрировать плазмонные волноводы в чипы, то можно использовать только электрическую накачку», — поясняет ученый. Он и его коллеги Дмитрий Свинцов и Алексей Арсенин из лаборатории нанооптики и плазмоники разработали новый метод электрической накачки плазмонных волноводов на основе МДП-структур (металл-диэлектрик-полупроводник) и провели его моделирование. Расчеты показывают, что пропускание относительно слабых токов накачки через наноразмерные плазмонные волноводы позволяет полностью компенсировать потери поверхностных плазмонов, а значит, становится возможным передавать сигнал без потерь на большие (по меркам чипа) расстояния. При этом степень интеграции таких активных плазмонных волноводов на порядок выше, чем фотонных.