`

СПЕЦИАЛЬНЫЕ
ПАРТНЕРЫ
ПРОЕКТА

Архив номеров

Что для вас является метрикой простоя серверной инфраструктуры?

Best CIO

Определение наиболее профессиональных ИТ-управленцев, лидеров и экспертов в своих отраслях

Человек года

Кто внес наибольший вклад в развитие украинского ИТ-рынка.

Продукт года

Награды «Продукт года» еженедельника «Компьютерное обозрение» за наиболее выдающиеся ИТ-товары

 

Найден стабильный материал для комплементарной органической электроники

0 
 
Найден стабильный материал для комплементарной органической электроники

В Лаборатории органической электроники шведского Университета Линчёпинг (LiU) родились первые в мире схемы комплементарной электрохимической логики, способные продолжительное время стабильно функционировать в водной среде. Эта разработка представляет значительный прорыв в технологиях биоэлектроники.

Зачинателями этого направления также были сотрудники LiU. В 2002 г. они представили электрохимические транзисторы, изготовленные печатным способом. С тех пор технологии органической электроники прогрессировали быстрыми темпами, и в настоящее время светодиоды и электрохимические дисплеи уже выпускаются в коммерческих масштабах.

Доминирующим материалом для этих устройств до сих пор был PEDOT:PSS, полимер с проводимостью дырочного типа (p). Но для конструирования эффективных электронных компонентов его требовалось дополнить материалом n-типа, в котором носителями заряда выступают электроны. Это позволило бы отказаться от использования громоздких резисторов и уменьшить габариты электрохимических схем.

В своих попытках найти такой материал исследователи столкнулись с проблемой: длинные молекулярные цепочки легированных полимеров не обладали достаточной стабильностью при прохождении по ним сильного тока.

В новой статье для Advanced Materials, Симоне Фабиано (Simone Fabiano), глава группы Органической Наноэлектроники LiU, вместе с коллегами представил результаты испытаний материалов с n-проводимостью, имеющих полимерную структуру «лестничного» типа, которая позволяет сохранять стабильность в условиях высокого тока и легирования.

Один из примеров такого материала — BBL (полибензимидазобензофенантролин) — термостойкий полимер, часто применяемый в солнечных батареях. Шведские учёные смогли напылением получать толстые (до 200 нм) плёнки BBL. Чем больше их толщина, тем выше электропроводность. Кроме того, технологию напыления достаточно легко совместить с процессом печати электронных плат.

Изготовленные таким образом устройства демонстрировали стабильную работу в течение долгого времени в присутствии кислорода и воды. Вдохновлённые успешными испытаниями авторы теперь конструируют более сложные схемы комплементарной логики — инверторы, сенсоры и пр., способные функционировать во влажной среде.

0 
 

Напечатать Отправить другу

Читайте также

 
 
IDC
Реклама

  •  Home  •  Рынок  •  ИТ-директор  •  CloudComputing  •  Hard  •  Soft  •  Сети  •  Безопасность  •  Наука  •  IoT