`

СПЕЦИАЛЬНЫЕ
ПАРТНЕРЫ
ПРОЕКТА

Архив номеров

Что для вас является метрикой простоя серверной инфраструктуры?

Best CIO

Определение наиболее профессиональных ИТ-управленцев, лидеров и экспертов в своих отраслях

Человек года

Кто внес наибольший вклад в развитие украинского ИТ-рынка.

Продукт года

Награды «Продукт года» еженедельника «Компьютерное обозрение» за наиболее выдающиеся ИТ-товары

 

Благодаря ИИ от Microsoft техподдержка 2GIS в 8 раз сократила время обработки заявок

0 
 

Международная картографическая компания 2GIS автоматизировала работу внутренней техподдержки за счет применения технологий машинного обучения. Система на базе Microsoft Azure Machine Learning автоматически сортирует все входящие заявки, благодаря чему специалистам не приходится делать это вручную. Освободившееся время уходит на выполнение более важных задач.

Под брендом 2GIS работают 4500 специалистов. Среди них – пользователи разработанных внутри компании приложений для отрисовки карты, наполнения справочника, CRM и др. Каждый день служба внутренней поддержки компании получает от них в среднем 200 заявок, классификацией которых занимаются два специалиста. При ручной сортировке на каждый запрос у них уходило около минуты. Компании требовался инструмент, способный сократить время обработки каждой заявки, чтобы высвободить сотрудникам время для более важной работы.

Для решения этой бизнес-задачи была разработана система на базе Azure Machine Learning для клиента Jira Service Desk, используемого в компании для ведения учета заявок. Благодаря машинному обучению происходит автоматическая классификация входящих заявок по 28 группам вопросов (классам). Система убирает лишние символы, нечитаемые кодировки, вычищает знаки препинания, а затем определяет класс, к которому принадлежит заявка. Специалисту остается только убедиться, что система правильно ее классифицировала. Средняя точность предсказаний уже сейчас составляет 74%, а по некоторым классам превышает 85-90%, при этом модель самообучается и совершенствуется по мере обработки заявок.

Применение Azure ML позволило сократить срок классификации заявки до 5-7 секунд освободив таким образом более 70 человеко-часов в месяц (около 40% рабочего времени сотрудника). Специалисты получили возможность более качественно и углубленно изучать заявки, а также брать дополнительные, более важные задачи в освободившееся время.

Примечательно, что для разработки системы 2GIS не потребовалось привлекать разработчиков – сотрудники отдела ИТ-поддержки самостоятельно создали решение, т.к. для работы с Azure Machine Learning Studio не требуется наличия специализированных знаний.

В планах 2GIS – сделать автоматическое назначение заявок по всем классам без премодерации. И в будущем – полностью исключить процесс маршрутизации заявок на первой линии.


Вы можете подписаться на наш Telegram-канал для получения наиболее интересной информации

0 
 

Напечатать Отправить другу

Читайте также

 
 
Реклама

  •  Home  •  Рынок  •  ИТ-директор  •  CloudComputing  •  Hard  •  Soft  •  Сети  •  Безопасность  •  Наука  •  IoT