`

СПЕЦИАЛЬНЫЕ
ПАРТНЕРЫ
ПРОЕКТА

Архив номеров

Как изменилось финансирование ИТ-направления в вашей организации?

Best CIO

Определение наиболее профессиональных ИТ-управленцев, лидеров и экспертов в своих отраслях

Человек года

Кто внес наибольший вклад в развитие украинского ИТ-рынка.

Продукт года

Награды «Продукт года» еженедельника «Компьютерное обозрение» за наиболее выдающиеся ИТ-товары

 

Разработка ПО: модели жизненного цикла

0 
 

Индустрия ПО развивается стремительными темпами, однако ни для кого не секрет, что процесс разработки еще очень далек от совершенства и для него характерно множество внутренних проблем. По данным исследования Standish Group (www.standishgroup.com), менее третьей части программных проектов оказываются успешными, остальные – либо не вписываются в финансовые и временны2е рамки, либо заканчиваются полным провалом.

Работающий в одиночку герой-
программист – анахронизм.

Эдвард Йордон

В упомянутом исследовании утверждается, что наиболее успешны небольшие проекты, а риск провала тем выше, чем они значительнее. Это свидетельствует о том, что с ростом масштабов задачи менеджеры не справляются с управлением выделенными ресурсами.

Собственно, проблема роста сложности управления в зависимости от увеличения размера организации далеко не нова, однако в программировании она приобретает новые очертания: если для реализации проекта в срок недостаточно ресурсов, то простое их увеличение только усугубит проблему и срок выполнения будет отодвинут еще дальше (речь идет прежде всего о человеческих ресурсах, поскольку остальные в программировании гораздо менее существенны).

Об этом впервые серьезно заговорили после выхода в 1975 г. книги Фредерика Брукса «Мифический человекомесяц», ставшей впоследствии классикой. Характерно, что она переиздается уже многие годы, и основные ее положения до сих пор остаются справедливыми. В своей более поздней работе Брукс выделил две составляющие сложности разработки ПО: трудности, присущие специфике создания ПО, и акцидентальные – в данном контексте такие, которые связаны с ограничениями уровня развития науки и техники. Вторые более или менее успешно преодолеваются на пути научно-технического прогресса, зато первые будут сопровождать разработку ПО всегда.

Эффективное управление любым процессом возможно при условии, что субъект управления адекватно воспринимает состояние и поведение объекта управления. В том, что касается создания ПО, это является весьма сложной задачей, поскольку процесс разработки – сугубо интеллектуальная, во многом творческая деятельность, для которой конвейерные либо другие им подобные методы неприменимы. Поэтому и были предприняты активные попытки представить модель процесса создания ПО, которая в максимальной степени смогла бы учесть присущие ему особенности и сделать его управляемым.

Модели на основе инженерного подхода

Модель «кодирование–устранение ошибок». Она описывается следующим образом: 1) поставить задачу; 2) выполнять ее до успешного завершения либо отмены; 3) проверить результат; 4) повторить при необходимости с 1-го шага.

Естественно, такая модель никоим образом не структурировала процесс разработки, и говорить о возможности ее эффективного применения, особенно в крупных проектах, бессмысленно.

Каскадная модель. Первой моделью, получившей широкую известность и действительно структурирующей процесс разработки, является каскадная или водопадная. Она была создана после прошедшей в 1968 г. конференции NATO по вопросам науки и техники, где рассматривались подобные вопросы, и разделяет процесс создания программного продукта на последовательные этапы (следует отметить, что она уже применялась тогда различными разработчиками, однако ни количество, ни содержание этапов не унифицировалось).

Разработка ПО модели жизненного цикла
Рис. 1. Модифицированная каскадная модель предусматривала возможность возвращения к предыдущим этапам

Спустя непродолжительное время после своего появления на свет каскадная модель была доработана Уинстом Ройсом с учетом взаимозависимости этапов и необходимости возврата на предыдущие ступени, что может быть вызвано, например, неполнотой требований или ошибками в формировании задания. В таком «обратимом» виде каскадная модель просуществовала долгое время и явилась основой для многих проектов (рис. 1).

Однако практическое использование данной модели выявило множество ее недостатков, главный из которых состоял в том, что она больше подходит для традиционных видов инженерной деятельности, чем для разработки ПО. В частности, одной из самых больших проблем оказалась ее «предрасположенность» к возможным несоответствиям полученного в результате продукта и требований, которые к нему предъявлялись. Основная причина этого заключается в том, что полностью сформированный продукт появляется лишь на поздних этапах разработки, но так как работу на разных этапах обычно выполняли различные специалисты и проект передавался от одной группы к другой, то по принципу испорченного телефона оказывалось так, что на выходе получалось не совсем то, что предполагалось вначале.

Разработка ПО модели жизненного цикла
Рис. 2. V-образная модель позволяет гораздо лучше контролировать результат на предмет его соответствия ожиданиям, поскольку сфокусирована на тестировании

V-образная модель. Была предложена именно для того, чтобы устранить недостатки каскадной модели, а название – V-образная, или шарнирная – появилось из-за ее специфического графического представления (рис. 2).

V-образная модель дала возможность значительно повысить качество ПО за счет своей ориентации на тестирование, а также во многом разрешила проблему соответствия созданного продукта выдвигаемым требованиям благодаря процедурам верификации и аттестации на ранних стадиях разработки (пунктирные линии на рисунке указывают на зависимость этапов планирования/постановки задачи и тестирования/приемки).

Однако в целом V-образная модель является всего лишь модификацией каскадной и обладает многими ее недостатками. В частности, и та и другая слабо приспособлены к возможным изменениям требований заказчика. Если процесс разработки занимает продолжительное время (иногда до нескольких лет), то полученный в результате продукт может оказаться фактически ненужным заказчику, поскольку его потребности существенно изменились.

В той же мере актуален и вопрос влияния научно-технического прогресса: требования к ПО выдвигаются с учетом текущего состояния научных и практических достижений в области аппаратно-программного обеспечения, однако IТ-сфера развивается очень быстро, и затянувшийся процесс разработки способен привести к созданию продукта, который базируется на устаревших технологиях и оказывается неконкурентоспособным еще до своего появления.

Важен также вопрос планирования показателей ожидаемой функциональности, поскольку в этих моделях он является не более чем допущением: в частности, определить, какую скорость обработки данных обеспечит создаваемый продукт либо сколько он будет занимать памяти, на этапе постановки задачи практически невозможно. Если подобные требования четко зафиксированы в условиях договора между заказчиком и исполнителем, то вполне вероятно, что полученное решение не будет им удовлетворять, хотя известно это станет только на завершающих этапах разработки, когда основные ресурсы уже израсходованы.

В итоге заказчик будет вынужден либо мириться с ограничениями созданного на основе рассмотренных моделей решения, либо дополнительно инвестировать средства, чтобы получить действительно то, что необходимо.

Модели, учитывающие специфику разработки ПО

Поскольку первые модели были заимствованы из традиционной инженерной области, они не учитывали в полной мере специфику производства ПО. Однако последующие модели были уже гораздо больше ориентированы на особенности этого вида деятельности, имеющего много принципиальных отличий от конструирования предметов материального мира.

Модель на основе создания прототипов. В связи с тем что заказчик достаточно часто не является специалистом в области ПО, он обычно плохо воспринимает «голые» спецификации продукта. Для того чтобы преодолеть информационный барьер между заказчиком и разработчиком и снизить риск получения продукта, который не соответствует выдвигаемым требованиям, стал применяться подход, направленный на создание прототипов, представляющих собой полностью или частично рабочие модели готовой системы. Он позволяет значительно улучшить взаимопонимание между всеми участниками процесса за счет последовательного, эволюционного развития системы на основе итеративного уточнения прототипов.

Применение последних подобно использованию уменьшенных макетов зданий в архитектуре – они дают возможность наглядно представить конечный результат, их построение и изменение гораздо менее трудоемко по сравнению с возведением и изменением самого здания.

Однако, несмотря не все преимущества, данная модель также не стала панацеей. Основные ее проблемы лежали в плоскости взаимоотношений «заказчик–исполнитель»: первый был заинтересован в создании как можно более подробных прототипов для того, чтобы снизить риск получения неадекватной системы, в то же время для второго каждый новый прототип означал дополнительные затраты времени и ресурсов, а в итоге – снижение рентабельности проекта.

Инкрементная модель. ПО в отличие, например, от микросхемы можно вводить в эксплуатацию по частям, а значит, разрабатывать и поставлять его заказчику также можно постепенно. Именно на этом основана инкрементная модель, предусматривающая дробление продукта на относительно независимые составляющие, которые разрабатываются и вводятся в эксплуатацию по отдельности.

Такая модель выгодна как для заказчика, так и для создателя системы, поскольку позволяет продвигаться вперед, соблюдая интересы обеих сторон. Однако у нее есть свои недостатки. Деление на функциональные блоки в целом замедляет процесс, так как возникает необходимость обеспечения их взаимодействия. Для многих решений этот метод неприменим, поскольку из них нельзя вычленить отдельные составляющие, которые могут быть поставлены и функционировать независимо. Существенно возрастает нагрузка и на руководящий персонал в связи с усложнением задач по координированию работ над отдельными составляющими системы, увеличивается стоимость внесения изменений в готовые компоненты, которые уже установлены и работают у заказчика.

Разработка ПО модели жизненного цикла
Рис. 3. Спиральная модель Боэма объединяет каскадный подход и итерационный процесс проектирования на основе создания прототипов

Спиральная модель. Предложенная Барри Боэмом в 1988 г., она стала существенным прорывом в понимании природы разработки ПО, хотя, по большому счету, является объединением двух моделей: каскадной и на основе создания прототипов (рис. 3).

Спиральная модель Боэма сфокусирована на проектировании. Собственно разработка ПО происходит лишь на последнем витке спирали по обычной каскадной модели, однако этому предшествует несколько итераций проектирования на основе создания прототипов – при этом каждая итерация включает стадию выявления и анализа рисков и наиболее сложных задач.

Поскольку спиральная модель в основном охватывает именно проектирование, то в первоначальном виде она не получила широкого распространения в качестве метода управления всем жизненным циклом создания ПО. Однако главная ее идея, заключающаяся в том, что процесс работы над проектом может состоять из циклов, проходящих одни и те же этапы, послужила исходным пунктом для дальнейших исследований и стала основой большинства современных моделей процесса разработки ПО.

Современные модели

К середине 1990-х годов индустрия ПО стала достаточно развитой, сложные проекты успешно реализовывались с помощью приобретающей популярность объектно-ориентированной методологии, а команды разработчиков стали применять подходы, основанные на использовании наиболее значимых преимуществ предыдущих моделей.

Объектно-ориентированная модель. Данная методология предполагает конструирование программного решения из готовых объектов, для которых определяются правила их взаимодействия, переводящие объекты из одного состояния в другое. Такая модель, предусматривающая полное соответствие процесса разработки положениям объектно-ориентированной методологии (объектно-ориентированный анализ, проектирование, программирование), эффективна в крупных проектах, а также там, где применяются так называемые средства быстрой разработки (RAD, Rapid Application Development), основанные на этих технологиях и содержащие готовые библиотеки классов.

Однако сами по себе RAD-системы не располагают к созданию объектно-ориентированных решений. Программисты, избалованные инструментарием, позволяющим в считаные часы создавать из готовых компонентов продукты, на которые ранее уходили дни и месяцы работы, считают лишним утруждать себя детальным изучением методологии и UML, а уж тем более не стремятся оформлять свои решения в виде классов, пригодных для повторного использования.

Таким образом, объектно-ориентированная модель применяется преимущественно в очень крупных проектах, где уделяется должное внимание этапам анализа и проектирования, а также жестко контролируется соблюдение разработчиками установленных правил.

Разработка ПО модели жизненного цикла
Рис. 4. Итеративная модель предлагает использование итераций на всех этапах жизненного цикла

Итеративная модель. Впервые предложенная Филиппом Крачтеном в 1995 г., данная модель объединяет главные преимущества спиральной, инкрементной, каскадной моделей, а также методов разработки на основе создания прототипов и объектно-ориентированного подхода (рис. 4). Она завоевала большую популярность и в том или ином виде используется во многих современных проектах.

В соответствии с итеративной моделью имеются четыре основные фазы жизненного цикла разработки ПО (начало, исследование, построение и внедрение). На каждой фазе проект проходит множество итераций, приводящих к созданию работоспособных версий: на начальных создаются прототипы, уточняются требования, прорабатываются наиболее сложные проблемы; конечные приводят к созданию продукта, его совершенствованию и расширению функциональности.

Итеративная модель, помимо основных фаз, выделяет еще две группы процессов: рабочие (управление требованиями, анализ и проектирование, реализация, тестирование, развертывание) и вспомогательные (управление конфигурацией и изменениями, проектом и процессом). Количество и суть процессов варьируются в зависимости от потребностей разработчика, они также могут иметь свои циклы, которые не обязательно даже соответствуют основным фазам. Однако результатом рабочих процессов всегда является создание версий продукта.

Итеративная модель подобно спиральной дает возможность успешно справляться с рисками. Если во время работы над очередной версией будет установлено, что трудозатраты на реализацию необходимой функциональности слишком велики, то превышения бюджета и нарушения сроков можно будет избежать путем соотнесения приоритетов разработки и трудозатрат в начале каждой итерации. Таким образом, данная модель хорошо подходит для большинства типов программных проектов, но особенно ее преимущества заметны при работе над продуктами, предназначенными для выхода на свободный рынок, в силу изначальной ориентации на выпуск последовательных версий.

Филипп Крачтен долгое время работает в фирме Rational Software, которая сейчас принадлежит IBM. Именно по этой причине итеративная модель стала основой RUP (Rational Unified Process) – одного из наиболее распространенных методов комплексного управления процессом разработки ПО. На ее же основе разработан главный конкурент RUP со стороны Microsoft – MSF (Microsoft Solutions Framework), а также аналогичный подход компании Borland – ALM (Application Lifecycle Management).

Модели быстрой разработки. Множество ограничений в современных методологиях создания ПО привели к тому, что компании-разработчики во многом стали похожи на гигантские бюрократические системы. Наличие большого количества формальных процедур и правил существенно сужает свободу действий каждого конкретного программиста, превращает его в винтик в огромной и неповоротливой машине. Несмотря на то что подобные машины способны вполне успешно справляться со стоящими перед ними задачами, обычно их КПД довольно низок и удельная производительность отдельного разработчика настолько мала, что нормальным может считаться написание программистом нескольких строк кода в день.

Бросить вызов подобным перегруженным формальностями подходам призваны модели быстрой разработки, такие, как, например, экстремальное программирование. Их суть заключается в отказе от всего лишнего, что не относится непосредственно к созданию качественного программного продукта, а за основу берутся лишь наиболее эффективные методы создания ПО. Особое внимание уделяется вопросам взаимодействия с заказчиком, организации продуктивной работы и тестированию. Многие идеи быстрой разработки не были чем-то новым, например юнит-тесты уже давно применялись во многих проектах, однако собранные вместе и ставшие обязательными для применения, они возымели положительный эффект. Об этих методах в последнее время стали говорить все чаще, а их элементы начали заимствоваться многими классическими моделями.

В современных условиях быстрая разработка – это очень модный подход, и ее используют все активнее. Основное преимущество состоит в том, что сравнительно небольшие группы разработчиков способны справляться с проектами за то же время, которое необходимо при применении более традиционных методов командами на порядок большей численности.

Однако здесь имеются и свои недостатки, в частности быстрая разработка плохо подходит для крупных проектов и ориентирована в основном на небольшие и средние, кроме того, ее эффективное использование возможно только при условии, что создатели ПО обладают весьма высокой квалификацией и значительным опытом.

Адаптированные и комбинированные модели. На самом деле в процессе эволюции моделей жизненного цикла разработки ПО новые идеи не заменяли старые целиком и полностью. Более правильно считать, что каждая из них имеет собственную сферу применения. Кроме того, в каждом конкретном случае может оказаться, что не существует методики, которая идеально подходит для решения данной задачи. В этом случае менеджерам программных проектов следует рассмотреть варианты адаптации моделей под конкретные потребности либо применять комбинированные методы, включающие элементы различных подходов. Например, успех быстрой разработки привел к тому, что более консервативные модели переняли самые эффективные ее приемы и стали использовать их уже в рамках своих процессов.

0 
 

Напечатать Отправить другу

Читайте также

 
 
IDC
Реклама

  •  Home  •  Рынок  •  ИТ-директор  •  CloudComputing  •  Hard  •  Soft  •  Сети  •  Безопасность  •  Наука  •  IoT