`

СПЕЦИАЛЬНЫЕ
ПАРТНЕРЫ
ПРОЕКТА

Архив номеров

Как изменилось финансирование ИТ-направления в вашей организации?

Best CIO

Определение наиболее профессиональных ИТ-управленцев, лидеров и экспертов в своих отраслях

Человек года

Кто внес наибольший вклад в развитие украинского ИТ-рынка.

Продукт года

Награды «Продукт года» еженедельника «Компьютерное обозрение» за наиболее выдающиеся ИТ-товары

 

Эффективность беспроводной зарядки на расстоянии увеличили встречным сигналом

0 
 

Международная группа учёных предложила способ, с помощью которого можно повысить эффективность беспроводной передачи энергии на дальние расстояния, и проверила его с помощью численного моделирования и прямых экспериментов.

Исследования проводились с использованием специально сконструированных антенн, одна из которых направленно излучает электромагнитные волны, а вторая поглощает и передаёт их энергию в электрическую цепь. Существенно улучшить излучающую антенну нельзя, поскольку её работа сводится только к генерации волн. Все усилия прикладывались для совершенствования принимающей.

Эффективность беспроводной зарядки на расстоянии увеличили встречным сигналом

Схема принимающей антенны. Падающее излучение обозначено как SF, переданная в электрическую цепь доля — как sw−, дополнительный сигнал, направленный на антенну, — как sw+

Важно отметить, что принимающая антенна не поглощает всё падающее на неё излучение полностью, но частично переизлучает его обратно в пространство. Поэтому такую антенну можно описать двумя параметрами — характерным временем переизлучения свободных электромагнитных волн обратно в пространство τF и характерным временем передачи энергии в электрическую цепь τw. Характерное время — это время, в течение которого амплитуда волны уменьшается в заданное число раз (обычно в качестве меры выбирают число e). В зависимости от соотношения между этими временами доля «выкачанной» из падающей волны энергии будет различной, достигая максимума при условии τF = τw. Если время τF меньше времени τw, антенна слишком быстро начинает переизлучать, а в противном случае она слишком медленно воспринимает падающее излучение. Это равенство называется условием согласования (conjugate matching condition). Обычно антенны стараются изготовить так, чтобы оно выполнялось, но абсолютной точности достигнуть сложно. Кроме того, изначально настроенная антенна может легко «расстроиться» из-за изменения температуры, переотражений сигнала от рельефа и других внешних факторов. Наконец, доля поглощённой энергии зависит от частоты падающей волны: эффективнее всего поглощение происходит на резонансной частоте антенны.

Если на принимающую антенну будет подаваться дополнительный сигнал со стороны приёмника, амплитуда и фаза которого согласованы с амплитудой и фазой падающей волны, волны станут интерферировать, и доля «выкачанной» энергии может измениться. Именно такую конфигурацию рассмотрела в своей работе группа учёных под руководством Андреа Алу (Andrea Alù) при участии Дениса Баранова из МФТИ.

Эффективность беспроводной зарядки на расстоянии увеличили встречным сигналом

(a) Зависимость энергетического баланса Σ от мощности дополнительного сигнала при условии τF/τw = 0,1 и разном сдвиге фаз между падающей волной и сигналом (область, ограниченная цветными линиями). Для сравнения приведена зависимость для «настроенной» антенны (τF = τw, пунктирная линия). (b) Зависимость коэффициента усиления — отношения максимального энергетического баланса к балансу при нулевом сигнале — от отношения между характерными временами.

Физики теоретически оценили, насколько заметного усиления можно добиться с её помощью по сравнению с пассивной антенной. Оказалось, что в случае выполнения условия согласования новая схема не позволяет получить какой-либо прирост переданной энергии — антенна и так уже достаточно хорошо настроена. Однако в случае «расстроенных» антенн, для которых времена τF и τw отличаются в несколько раз, дополнительный сигнал начинает оказывать заметное влияние. В зависимости от его фазы и амплитуды энергетический баланс схемы Σ (то есть разность между полученной и затраченной энергией) может превысить энергетический баланс пассивной антенны в несколько раз и дотянуть до энергий, воспринимаемых «настроенной» антенной.

Чтобы подтвердить теоретические расчёты, учёные численно смоделировали дипольную антенну длиной около 5 см, соединённую с источником напряжения, и направили на неё излучение с частотой около 1,36 ГГц. Рассчитанная в такой схеме зависимость энергетического баланса от фазы и амплитуды сигнала в целом совпала с теоретическими оценками. Интересно, что максимальной возможной величины баланс достигал в том случае, если относительная фаза между сигналом и падающей волной равнялась нулю. Учёные объясняют это тем, что при подаче на антенну сигнала её эффективная апертура (то есть собирающая способность) увеличивается, и доля поглощённой энергии растёт. Увеличение апертуры можно увидеть, если посмотреть на вектор Пойнтинга вокруг антенны, то есть на направления переноса энергии электромагнитного излучения.

Эффективность беспроводной зарядки на расстоянии увеличили встречным сигналом

Величина вектора Пойнтинга вокруг антенны в случае сдвига фаз φ = 0 градусов (слева) и φ = 180 градусов

Наконец, помимо численных расчётов физики поставили прямой эксперимент с двумя коаксиальными адаптерами, которые работали в качестве микроволновых антенн и находились друг от друга на отдалении около 10 см. Один из адаптеров излучал волны с энергией около 1 мВт, а второй пытался принять их и передать по коаксиальному кабелю к полезной нагрузке. На частотах более 8 ГГц адаптеры работали как «настроенные» антенны и передавали энергию практически без потерь. Однако на меньших частотах доля отражённого излучения резко увеличивалась, и адаптеры больше напоминали «расстроенные» антенны. В этом случае с помощью дополнительных сигналов исследователям удалось увеличить количество переданной энергии практически на порядок.

Эффективность беспроводной зарядки на расстоянии увеличили встречным сигналом

Экспериментально измеренная зависимость энергетического баланса от фазового сдвига и мощности сигнала в случае «настроенной» (a) и «расстроенной» (b) антенны.

0 
 

Напечатать Отправить другу

Читайте также

 
 
IDC
Реклама

  •  Home  •  Рынок  •  ИТ-директор  •  CloudComputing  •  Hard  •  Soft  •  Сети  •  Безопасность  •  Наука  •  IoT