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Abstract

We demonstrate the separation of the complexity class NP from its subclass

P. Throughout our proof, we observe that the ability to compute a property

on structures in polynomial time is intimately related to the statistical notions

of conditional independence and sufficient statistics. The presence of condi-

tional independencies manifests in the form of economical parametrizations of

the joint distribution of covariates. In order to apply this analysis to the space

of solutions of random constraint satisfaction problems, we utilize and expand

upon ideas from several fields spanning logic, statistics, graphical models, ran-

dom ensembles, and statistical physics.

We begin by introducing the requisite framework of graphical models for a

set of interacting variables. We focus on the correspondence between Markov

and Gibbs properties for directed and undirected models as reflected in the fac-

torization of their joint distribution, and the number of independent parameters

required to specify the distribution.

Next, we build the central contribution of this work. We show that there are

fundamental conceptual relationships between polynomial time computation,

which is completely captured by the logic FO(LFP) on some classes of struc-

tures, and certain directed Markov properties stated in terms of conditional

independence and sufficient statistics. In order to demonstrate these relation-

ships, we view a LFP computation as “factoring through” several stages of first

order computations, and then utilize the limitations of first order logic. Specifi-

cally, we exploit the limitation that first order logic can only express properties

in terms of a bounded number of local neighborhoods of the underlying struc-

ture.

Next we introduce ideas from the 1RSB replica symmetry breaking ansatz

of statistical physics. We recollect the description of the d1RSB clustered phase

for random k-SAT that arises when the clause density is sufficiently high. In

this phase, an arbitrarily large fraction of all variables in cores freeze within



exponentially many clusters in the thermodynamic limit, as the clause density is

increased towards the SAT-unSAT threshold for large enough k. The Hamming

distance between a solution that lies in one cluster and that in another is O(n).

Next, we encode k-SAT formulae as structures on which FO(LFP) captures

polynomial time. By asking FO(LFP) to extend partial assignments on ensem-

bles of random k-SAT, we build distributions of solutions. We then construct a

dynamic graphical model on a product space that captures all the information

flows through the various stages of a LFP computation on ensembles of k-SAT

structures. Distributions computed by LFP must satisfy this model. This model

is directed, which allows us to compute factorizations locally and parameterize

using Gibbs potentials on cliques. We then use results from ensembles of factor

graphs of random k-SAT to bound the various information flows in this di-

rected graphical model. We parametrize the resulting distributions in a manner

that demonstrates that irreducible interactions between covariates — namely,

those that may not be factored any further through conditional independencies

— cannot grow faster than poly(log n) in the LFP computed distributions. This

characterization allows us to analyze the behavior of the entire class of polyno-

mial time algorithms on ensembles simultaneously.

Using the aforementioned limitations of LFP, we demonstrate that a pur-

ported polynomial time solution to k-SAT would result in solution space that

is a mixture of distributions each having an exponentially smaller parametriza-

tion than is consistent with the highly constrained d1RSB phases of k-SAT. We

show that this would contradict the behavior exhibited by the solution space in

the d1RSB phase. This corresponds to the intuitive picture provided by physics

about the emergence of extensive (meaning O(n)) long-range correlations be-

tween variables in this phase and also explains the empirical observation that

all known polynomial time algorithms break down in this phase.

Our work shows that every polynomial time algorithm must fail to produce

solutions to large enough problem instances of k-SAT in the d1RSB phase. This

shows that polynomial time algorithms are not capable of solving NP-complete

problems in their hard phases, and demonstrates the separation of P from NP.
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1. Introduction

The P
?
= NP question is generally considered one of the most important and

far reaching questions in contemporary mathematics and computer science.

The origin of the question seems to date back to a letter from Gödel to Von

Neumann in 1956 [Sip92]. Formal definitions of the class NP awaited work by

Edmonds [Edm65], Cook [Coo71], and Levin [Lev73]. The Cook-Levin theorem

showed the existence of complete problems for this class, and demonstrated

that SAT– the problem of determining whether a set of clauses of Boolean lit-

erals has a satisfying assignment – was one such problem. Later, Karp [Kar72]

showed that twenty-one well known combinatorial problems, which include

TRAVELLING SALESMAN, CLIQUE, and HAMILTONIAN CIRCUIT, were also

NP-complete. In subsequent years, many problems central to diverse areas of

application were shown to be NP-complete (see [GJ79] for a list). If P 6= NP,

we could never solve these problems efficiently. If, on the other hand P = NP,

the consequences would be even more stunning, since every one of these prob-

lems would have a polynomial time solution. The implications of this on ap-

plications such as cryptography, and on the general philosophical question of

whether human creativity can be automated, would be profound.

The P
?
= NP question is also singular in the number of approaches that re-

searchers have brought to bear upon it over the years. From the initial question

in logic, the focus moved to complexity theory where early work used diago-

nalization and relativization techniques. However, [BGS75] showed that these

methods were perhaps inadequate to resolve P
?
= NP by demonstrating rela-

tivized worlds in which P = NP and others in which P 6= NP (both relations

for the appropriately relativized classes). This shifted the focus to methods us-
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1. INTRODUCTION 4

ing circuit complexity and for a while this approach was deemed the one most

likely to resolve the question. Once again, a negative result in [RR97] showed

that a class of techniques known as “Natural Proofs” that subsumed the above

could not separate the classes NP and P, provided one-way functions exist.

Owing to the difficulty of resolving the question, and also to the negative

results mentioned above, there has been speculation that resolving the P
?
=

NP question might be outside the domain of mathematical techniques. More

precisely, the question might be independent of standard axioms of set theory.

The first such results in [HH76] show that some relativized versions of the P
?
=

NP question are independent of reasonable formalizations of set theory.

The influence of the P
?
= NP question is felt in other areas of mathematics.

We mention one of these, since it is central to our work. This is the area of de-

scriptive complexity theory — the branch of finite model theory that studies the

expressive power of various logics viewed through the lens of complexity the-

ory. This field began with the result [Fag74] that showed that NP corresponds

to queries that are expressible in second order existential logic over finite struc-

tures. Later, characterizations of the classes P [Imm86], [Var82] and PSPACE

over ordered structures were also obtained.

There are several introductions to the P
?
= NP question and the enormous

amount of research that it has produced. The reader is referred to [Coo06] for an

introduction which also serves as the official problem description for the Clay

Millenium Prize. An older excellent review is [Sip92]. See [Wig07] for a more

recent introduction. Most books on theoretical computer science in general,

and complexity theory in particular, also contain accounts of the problem and

attempts made to resolve it. See the books [Sip96] and [BDG95] for standard

references.

Preliminaries and Notation

Treatments of standard notions from complexity theory, such as definitions of

the complexity classes P, NP, PSPACE, and notions of reductions and com-

pleteness for complexity classes, etc. may be found in [Sip96, BDG95].

4



1. INTRODUCTION 5

Our work will span various developments in three broad areas. While we

have endeavored to be relatively complete in our treatment, we feel it would

be helpful to provide standard textual references for these areas, in the order

in which they appear in the work. Additional references to results will be pro-

vided within the chapters.

Standard references for graphical models include [Lau96] and the more re-

cent [KF09]. For an engaging introduction, please see [Bis06, Ch. 8]. For an

early treatment in statistical mechanics of Markov random fields and Gibbs dis-

tributions, see [KS80].

Preliminaries from logic, such as notions of structure, vocabulary, first order

language, models, etc., may be obtained from any standard text on logic such

as [Hod93]. In particular, we refer to [EF06, Lib04] for excellent treatments of

finite model theory and [Imm99] for descriptive complexity.

For a treatment of the statistical physics approach to random CSPs, we rec-

ommend [MM09]. An earlier text is [MPV87].

1.1 Synopsis of Proof

This proof requires a convergence of ideas and an interplay of principles that

span several areas within mathematics and physics. This represents the major-

ity of the effort that went into constructing the proof. Given this, we felt that

it would be beneficial to explain the various stages of the proof, and highlight

their interplay. The technical details of each stage are described in subsequent

chapters.

Consider a system of n interacting variables such as is ubiquitous in mathe-

matical sciences. For example, these may be the variables in a k-SAT instance

that interact with each other through the clauses present in the k-SAT formula,

or n Ising spins that interact with each other in a ferromagnet. Through their

interaction, variables exert an influence on each other, and affect the values each

other may take. The proof centers on the study of logical and algorithmic con-

structs where such complex interactions factor into “simpler” ones.

5



1. INTRODUCTION 6

The factorization of interactions can be represented by a corresponding fac-

torization of the joint distribution of the variables over the space of configura-

tions of the n variables subject to the constraints of the problem. It has been real-

ized in the statistics and physics communities for long that certain multivariate

distributions decompose into the product of a few types of factors, with each

factor itself having only a few variables. Such a factorization of joint distribu-

tions into simpler factors can often be represented by graphical models whose

vertices index the variables. A factorization of the joint distribution according to

the graph implies that the interactions between variables can be factored into a

sequence of “local interactions” between vertices that lie within neighborhoods

of each other.

Consider the case of an undirected graphical model. The factoring of inter-

actions may be stated in terms of either a Markov property, or a Gibbs property

with respect to the graph. Specifically, the local Markov property of such mod-

els states that the distribution of a variable is only dependent directly on that

of its neighbors in an appropriate neighborhood system. Of course, two vari-

ables arbitrarily far apart can influence each other, but only through a sequence

of successive local interactions. The global Markov property for such models states

that when two sets of vertices are separated by a third, this induces a condi-

tional independence on variables corresponding to these sets of vertices, given

those corresponding to the third set. On the other hand, the Gibbs property of a

distribution with respect to a graph asserts that the distribution factors into a

product of potential functions over the maximal cliques of the graph. Each po-

tential captures the interaction between the set of variables that form the clique.

The Hammersley-Clifford theorem states that a positive distribution having the

Markov property with respect to a graph must have the Gibbs property with

respect to the same graph.

The condition of positivity is essential in the Hammersley-Clifford theorem

for undirected graphs. However, it is not required when the distribution satis-

fies certain directed models. In that case, the Markov property with respect to

the directed graph implies that the distribution factorizes into local conditional

6



1. INTRODUCTION 7

probability distributions (CPDs). Furthermore, if the model is a directed acyclic

graph (DAG), we can obtain the Gibbs property with respect to an undirected

graph constructed from the DAG by a process known as moralization. We will

return to the directed case shortly.

At this point we begin to see that factorization into conditionally indepen-

dent pieces manifests in terms of economical parametrizations of the joint dis-

tribution. Thus, the number of independent parameters required to specify the joint

distribution may be used as a measure of the complexity of interactions between

the covariates. When the variates are independent, this measure takes its least

value. Dependencies introduced at random (such as in random k-SAT) cause it

to rise. Roughly speaking, this measure is (O(ck), c > 1) where k is the largest

interaction between the variables that cannot be decomposed any further. In-

tuitively, we know that constraint satisfaction problems (CSPs) are hard when

we cannot separate their joint constraints into smaller easily manageable pieces.

This should be reflected then, in the growth of this measure on the distribution

of all solutions to random CSPs as their constraint densities are increased. Infor-

mally, a CSP is hard (but satisfiable) when the distribution of all its solutions is

complex to describe in terms of its number of independent parameters due to

the extensive interactions between the variables in the CSP. Graphical models

offer us a way to measure the size of these interactions.

Chapter 2 develops the principles underlying the framework of graphical

models. We will not use any of these models in particular, but construct another

directed model on a larger product space that utilizes these principles and tailors

them to the case of least fixed point logic, which we turn to next.

At this point, we change to the setting of finite model theory. Finite model

theory is a branch of mathematical logic that has provided machine indepen-

dent characterizations of various important complexity classes including P,

NP, and PSPACE. In particular, the class of polynomial time computable

queries on ordered structures has a precise description — it is the class of queries

expressible in the logic FO(LFP) which extends first order logic with the ability

to compute least fixed points of positive first order formulae. Least fixed point

7



1. INTRODUCTION 8

constructions iterate an underlying positive first order formula, thereby build-

ing up a relation in stages. We take a geometric picture of a LFP computation.

Initially the relation to be built is empty. At the first stage, certain elements,

whose types satisfy the first order formula, enter the relation. This changes the

neighborhoods of these elements, and therefore in the next stage, other elements

(whose neighborhoods have been thus changed in the previous stages) become

eligible for entering the relation. The positivity of the formula implies that once

an element is in the relation, it cannot be removed, and so the iterations reach

a fixed point in a polynomial number of steps. Importantly from our point of

view, the positivity and the stage-wise nature of LFP means that the computa-

tion has a directed representation on a graphical model that we will construct.

Recall at this stage that distributions over directed models enjoy factorization

even when they are not defined over the entire space of configurations.

We may interpret this as follows: LFP relies on the assumption that variables

that are highly entangled with each other due to constraints can be disentangled

in a way that they now interact with each other through conditional indepen-

dencies induced by a certain directed graphical model construction. Of course,

an element does influence others arbitrarily far away, but only through a sequence

of such successive local and bounded interactions. The reason LFP computations ter-

minate in polynomial time is analogous to the notions of conditional indepen-

dence that underlie efficient algorithms on graphical models having sufficient

factorization into local interactions.

In order to apply this picture in full generality to all LFP computations, we

use the simultaneous induction lemma to push all simultaneous inductions into

nested ones, and then employ the transitivity theorem to encode nested fixed

points as sections of a single relation of higher arity. Finally, we either do the

extra bookkeeping to work with relations of higher arity, or work in a larger

structure where the relation of higher arity is monadic (namely, structures of

k-types of the original structure). Either of these cases presents only a polyno-

mially larger overhead, and does not hamper our proof scheme. Building the

machinery that can precisely map all these cases to the picture of factorization

8



1. INTRODUCTION 9

into local interactions is the subject of Chapter 4.

The preceding insights now direct us to the setting necessary in order to sep-

arate P from NP. We need a regime of NP-complete problems where interac-

tions between variables are so “dense” that they cannot be factored through the

bottleneck of the local and bounded properties of first order logic that limit each

stage of LFP computation. Intuitively, this should happen when each variable

has to simultaneously satisfy constraints involving an extensive (O(n)) fraction

of the variables in the problem.

In search of regimes where such situations arise, we turn to the study of

ensemble random k-SAT where the properties of the ensemble are studied as a

function of the clause density parameter. We will now add ideas from this field

which lies on the intersection of statistical mechanics and computer science to

the set of ideas in the proof.

In the past two decades, the phase changes in the solution geometry of ran-

dom k-SAT ensembles as the clause density increases, have gathered much re-

search attention. The 1RSB ansatz of statistical mechanics says that the space of

solutions of random k-SAT shatters into exponentially many clusters of solu-

tions when the clause density is sufficiently high. This phase is called 1dRSB (1-

Step Dynamic Replica Symmetry Breaking) and was conjectured by physicists

as part of the 1RSB ansatz. It has since been rigorously proved for high values

of k. It demonstrates the properties of high correlation between large sets of

variables that we will need. Specifically, the emergence of cores that are sets of

C clauses all of whose variables lie in a set of size C (this actually forces C to be

O(n)). As the clause density is increased, the variables in these cores “freeze.”

Namely, they take the same value throughout the cluster. Changing the value of

a variable within a cluster necessitates changing O(n) other variables in order

to arrive at another satisfying solution, which would be in a different cluster.

Furthermore, as the clause density is increased towards the SAT-unSAT thresh-

old, each cluster collapses steadily towards a single solution, that is maximally

far apart from every other cluster. Physicists think of this as an “energy gap”

between the clusters. Such stages are precisely the ones that cannot be factored

9



1. INTRODUCTION 10

through local and bounded first order stages of a LFP computation due to the

tight coupling between O(n) variables. Finally, as the clause density increases

above the SAT-unSAT threshold, the solution space vanishes, and the underly-

ing instance of SAT is no longer satisfiable. We reproduce the rigorously proved

picture of the 1RSB ansatz that we will need in Chapter 5.

In Chapter 6, we make a brief excursion into the random graph theory of

the factor graph ensembles underlying random k-SAT. From here, we obtain

results that asymptotically almost surely upper bound the size of the largest

cliques in the neighborhood systems on the Gaifman graphs that we study later.

These provide us with bounds on the largest irreducible interactions between

variables during the various stages of an LFP computation.

Finally in Chapter 7, we pull all the threads and machinery together. First,

we encode k-SAT instances as queries on structures over a certain vocabulary

in a way that LFP captures all polynomial time computable queries on them.

We then set up the framework whereby we can generate distributions of solu-

tions to each instance by asking a purported LFP algorithm for k-SAT to extend

partial assignments on variables to full satisfying assignments.

Next, we embed the space of covariates into a larger product space which al-

lows us to “disentangle” the flow of information during a LFP computation.

This allows us to study the computations performed by the LFP with various

initial values under a directed graphical model. This model is only polynomi-

ally larger than the structure itself. We call this the Element-Neighborhood-Stage

Product, or ENSP model. The distribution of solutions generated by LFP then is

a mixture of distributions each of whom factors according to an ENSP.

At this point, we wish to measure the growth of independent parameters of dis-

tributions of solutions whose embeddings into the larger product space factor

over the ENSP. In order to do so, we utilize the following properties.

1. The directed nature of the model that comes from properties of LFP.

2. The properties of neighborhoods that are obtained by studies on random

graph ensembles, specifically that neighborhoods that occur during the

10



1. INTRODUCTION 11

LFP computation are of size poly(log n) asymptotically almost surely in

the n→∞ limit.

3. The locality and boundedness properties of FO that put constraints upon

each individual stage of the LFP computation.

4. Simple properties of LFP, such as the closure ordinal being a polynomial

in the structure size.

The crucial property that allows us to analyze mixtures of distributions that

factor according to some ENSP is that we can parametrize the distribution using

potentials on cliques of its moralized graph that are of size at most poly(log n).

This means that when the mixture is exponentially numerous, we will see fea-

tures that reflect the poly(log n) factor size of the conditionally independent

parametrization.

Now we close the loop and show that a distribution of solutions for SAT

with these properties would contradict the known picture of k-SAT in the d1RSB

phase for k > 8 — namely, the presence of extensive frozen variables in ex-

ponentially many clusters with Hamming distance between the clusters being

O(n). In particular, in exponentially numerous mixtures, we would have condi-

tionally independent variation between blocks of poly(log n) variables, causing

the Hamming distance between solutions to be of this order as well. In other

words, solutions for k-SAT that are constructed using LFP will display aggre-

gate behavior that reflects that they are constructed out of “building blocks” of

size poly(log n). This behavior will manifest when exponentially many solutions

are generated by the LFP construction.

This shows that LFP cannot express the satisfiability query in the d1RSB

phase for high enough k, and separates P from NP. This also explains the

empirical observation that all known polynomial time algorithms fail in the

d1RSB phase for high values of k, and also establishes on rigorous principles

the physics intuition about the onset of extensive long range correlations in the

d1RSB phase that causes all known polynomial time algorithms to fail.

11



2. Interaction Models and

Conditional Independence

Systems involving a large number of variables interacting in complex ways are

ubiquitous in the mathematical sciences. These interactions induce dependen-

cies between the variables. Because of the presence of such dependencies in a

complex system with interacting variables, it is not often that one encounters in-

dependence between variables. However, one frequently encounters conditional

independence between sets of variables. Both independence and conditional in-

dependence among sets of variables have been standard objects of study in

probability and statistics. Speaking in terms of algorithmic complexity, one of-

ten hopes that by exploiting the conditional independence between certain sets

of variables, one may avoid the cost of enumeration of an exponential number

of hypothesis in evaluating functions of the distribution that are of interest.

2.1 Conditional Independence

We first fix some notation. Random variables will be denoted by upper case

letters such as X, Y, Z, etc. The values a random variable takes will be denoted

by the corresponding lower case letters, such as x, y, z. Throughout this work,

we assume our random variables to be discrete unless stated otherwise. We

may also assume that they take values in a common finite state space, which

we usually denote by Λ following physics convention. We denote the probabil-

ity mass functions of discrete random variables X, Y, Z by PX(x), PY (y), PZ(z)

respectively. Similarly, PX,Y (x, y) will denote the joint mass of (X, Y ), and so

12



2. INTERACTION MODELS AND CONDITIONAL INDEPENDENCE 13

on. We drop subscripts on the P when it causes no confusion. We freely use the

term “distribution” for the probability mass function.

The notion of conditional independence is central to our proof. The intuitive

definition of the conditional independence of X from Y given Z is that the con-

ditional distribution of X given (Y, Z) is equal to the conditional distribution

of X given Z alone. This means that once the value of Z is given, no further

information about the value of X can be extracted from the value of Y . This

is an asymmetric definition, and can be replaced by the following symmetric

definition. Recall that X is independent of Y if

P (x, y) = P (x)P (y).

Definition 2.1. Let notation be as above. X is conditionally independent of Y

given Z, written X⊥⊥Y |Z, if

P (x, y | z) = P (x | z)P (y | z),

The asymmetric version which says that the information contained in Y is

superfluous to determining the value of X once the value of Z is known may

be represented as

P (xcondy, z) = P (x | z).

The notion of conditional independence pervades statistical theory [Daw79,

Daw80]. Several notions from statistics may be recast in this language.

EXAMPLE 2.2. The notion of sufficiency may be seen as the presence of a cer-

tain conditional independence [Daw79]. A sufficient statistic T in the problem

of parameter estimation is that which renders the estimate of the parameter in-

dependent of any further information from the sample X . Thus, if Θ is the

parameter to be estimated, then T is a sufficient statistic if

P (θ |x) = P (θ | t).

Thus, all there is to be gained from the sample in terms of information about

Θ is already present in T alone. In particular, if Θ is a posterior that is being

13



2. INTERACTION MODELS AND CONDITIONAL INDEPENDENCE 14

computed by Bayesian inference, then the above relation says that the posterior

depends on the data X through the value of T alone. Clearly, such a statement

would lead to a reduction in the complexity of inference.

2.2 Conditional Independence in Undirected Graph-

ical Models

Graphical models offer a convenient framework and methodology to describe

and exploit conditional independence between sets of variables in a system.

One may think of the graphical model as representing the family of distribu-

tions whose law fulfills the conditional independence statements made by the

graph. A member of this family may satisfy any number of additional condi-

tional independence statements, but not less than those prescribed by the graph.

In general, we will consider graphs G = (V,E) whose n vertices index a set of

n random variables (X1, . . . , Xn). The random variables all take their values

in a common state space Λ. The random vector (X1, . . . , Xn) then takes values

in a configuration space Ωn = Λn. We will denote values of the random vector

(X1, . . . , Xn) simply by x = (x1, . . . , xn). The notation XV \I will denote the set

of variables excluding those whose indices lie in the set I . Let P be a proba-

bility measure on the configuration space. We will study the interplay between

conditional independence properties of P and its factorization properties.

There are, broadly, two kinds of graphical models: directed and undirected.

We first consider the case of undirected models. Fig. 2.1 illustrates an undirected

graphical model with ten variables.

Random Fields and Markov Properties

Graphical models are very useful because they allow us to read off conditional

independencies of the distributions that satisfy these models from the graph

itself. Recall that we wish to study the relation between conditional indepen-

dence of a distribution with respect to a graphical model, and its factorization.

14



2. INTERACTION MODELS AND CONDITIONAL INDEPENDENCE 15

A C B

Figure 2.1: An undirected graphical model. Each vertex represents a random

variable. The vertices in set A are separated from those in set B by set C. For

random variables to satisfy the global Markov property relative to this graph-

ical model, the corresponding sets of random variables must be conditionally

independent. Namely, A⊥⊥B |C.

Towards that end, one may write increasingly stringent conditional indepen-

dence properties that a set of random variables satisfying a graphical model

may possess, with respect to the graph. In order to state these, we first define

two graph theoretic notions — those of a general neighborhood system, and of

separation.

Definition 2.3. Given a set of variables S known as sites, a neighborhood system

NS on S is a collection of subsets {Ni : 1 ≤ i ≤ n} indexed by the sites in S that

satisfy

1. a site is not a neighbor to itself (this also means there are no self-loops in

the induced graph): si /∈ Ni, and

2. the relationship of being a neighbor is mutual: si ∈ Nj ⇔ sj ∈ Ni.

In many applications, the sites are vertices on a graph, and the neighborhood

system Ni is the set of neighbors of vertex si on the graph. We will often be

interested in homogeneous neighborhood systems of S on a graph in which, for

15



2. INTERACTION MODELS AND CONDITIONAL INDEPENDENCE 16

each si ∈ S, the neighborhood Ni is defined as

Gi := {sj ∈ S : d(si, sj) ≤ r}.

Namely, in such neighborhood systems, the neighborhood of a site is simply

the set of sites that lie in the radius r ball around that site. Note that a nearest

neighbor system that is often used in physics is just the case of r = 1. We will need

to use the general case, where r will be determined by considerations from logic

that will be introduced in the next two chapters. We will use the term “variable”

freely in place of “site” when we move to logic.

Definition 2.4. Let A,B,C be three disjoint subsets of the vertices V of a graph

G. The set C is said to separate A and B if every path from a vertex in A to a

vertex in B must pass through C.

Now we return to the case of the vertices indexing random variables (X1, . . . , Xn)

and the vector (X1, . . . , Xn) taking values in a configuration space Ωn. A proba-

bility measure P on Ωn is said to satisfy certain Markov properties with respect

to the graph when it satisfies the appropriate conditional independencies with

respect to that graph. We will study the following two Markov properties, and

their relation to factorization of the distribution.

Definition 2.5. 1. The local Markov property. The distribution Xi (for every i)

is conditionally independent of the rest of the graph given just the vari-

ables that lie in the neighborhood of the vertex. In other words, the influ-

ence that variables exert on any given variable is completely described by

the influence that is exerted through the neighborhood variables alone.

2. The global Markov property. For any disjoint subsets A,B,C of V such that

C separates A from B in the graph, it holds that

A⊥⊥B |C.

We are interested in distributions that do satisfy such properties, and will

examine what effect these Markov properties have on the factorization of the

16



2. INTERACTION MODELS AND CONDITIONAL INDEPENDENCE 17

distributions. For most applications, this is done in the context of Markov random

fields.

We motivate a Markov random field with the simple example of a Markov

chain {Xn : n ≥ 0}. The Markov property of this chain is that any variable in

the chain is conditionally independent of all other variables in the chain given

just its immediate neighbors:

Xn⊥⊥{xk : k /∈ {n− 1, n, n+ 1} |Xn−1, Xn+1}.

A Markov random field is the natural generalization of this picture to higher

dimensions and more general neighborhood systems.

Definition 2.6. The collection of random variables X1, . . . , Xn is a Markov ran-

dom field with respect to a neighborhood system on G if and only if the following

two conditions are satisfied.

1. The distribution is positive on the space of configurations: P (x) > 0 for x ∈
Ωn.

2. The distribution at each vertex is conditionally independent of all other

vertices given just those in its neighborhood:

P (Xi |XV \i) = P (Xi |XNi
)

These local conditional distributions are known as local characteristics of

the field.

The second condition says that Markov random fields satisfy the local Markov

property with respect to the neighborhood system. Thus, we can think of inter-

actions between variables in Markov random fields as being characterized by

“piecewise local” interactions. Namely, the influence of far away vertices must

“factor through” local interactions. This may be interpreted as:

The influence of far away variables is limited to that which is transmit-

ted through the interspersed intermediate variables — there is no “direct”

influence of far away vertices beyond that which is factored through such

intermediate interactions.

17
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However, through such local interactions, a vertex may influence any other ar-

bitrarily far away. Notice though, that this is a considerably simpler picture

than having to consult the joint distribution over all variables for all interac-

tions, for here, we need only know the local joint distributions and use these to

infer the correlations of far away variables. We shall see in later chapters that

this picture, with some additional caveats, is at the heart of polynomial time

computations.

Note the positivity condition on Markov random fields. With this positivity

condition, the complete set of conditionals given by the local characteristics of

a field determine the joint distribution [Bes74].

Markov random fields satisfy the global Markov property as well.

Theorem 2.7. Markov random fields with respect to a neighborhood system satisfy the

global Markov property with respect to the graph constructed from the neighborhood

system.

Markov random fields originated in statistical mechanics [Dob68], where

they model probability measures on configurations of interacting particles, such

as Ising spins. See [KS80] for a treatment that focusses on this setting. Their lo-

cal properties were later found to have applications to analysis of images and

other systems that can be modelled through some form of spatial interaction.

This field started with [Bes74] and came into its own with [GG84] which ex-

ploited the Markov-Gibbs correspondence that we will deal with shortly. See

also [Li09].

2.2.1 Gibbs Random Fields and the Hammersley-Clifford The-

orem

We are interested in how the Markov properties of the previous section trans-

late into factorization of the distribution. Note that Markov random fields are

characterized by a local condition — namely, their local conditional indepen-

dence characteristics. We now describe another random field that has a global

characterization — the Gibbs random field.

18
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Definition 2.8. A Gibbs random field (or Gibbs distribution) with respect to a neigh-

borhood system NG on the graph G is a probability measure on the set of con-

figurations Ωn having a representation of the form

P (x1, . . . , xn) =
1

Z
exp(−U(x)

T
),

where

1. Z is the partition function and is a normalizing factor that ensures that the

measure sums to unity,

Z =
∑
x∈Ωn

exp(−U(x)

T
).

Evaluating Z explicitly is hard in general since it is a summation over each

of the Λn configurations in the space.

2. T is a constant known as the “Temperature” that has origins in statistical

mechanics. It controls the sharpness of the distribution. At high tempera-

tures, the distribution tends to be uniform over the configurations. At low

temperatures, it tends towards a distribution that is supported only on the

lowest energy states.

3. U(x) is the “energy” of configuration x and takes the following form as a

sum

U(x) =
∑
c∈C

Vc(x).

over the set of cliques C of G. The functions Vc : c ∈ C are the clique poten-

tials such that the value of Vc(x) depends only on the coordinates of x that

lie in the clique c. These capture the interactions between vertices in the

clique.

Thus, a Gibbs random field has a probability distribution that factorizes into

its constituent “interaction potentials.” This says that the probability of a con-

figuration depends only on the interactions that occur between the variables,

broken up into cliques. For example, let us say that in a system, each particle

19



2. INTERACTION MODELS AND CONDITIONAL INDEPENDENCE 20

interacts with only 2 other particles at a time, (if one prefers to think in terms

of statistical mechanics) then the energy of each state would be expressible as a

sum of potentials, each of whom had just three variables in its support. Thus,

the Gibbs factorization carries in it a faithful representation of the underlying

interactions between the particles. This type of factorization obviously yields

a “simpler description” of the distribution. The precise notion is that of inde-

pendent parameters it takes to specify the distribution. Factorization into con-

ditionally independent interactions of scope k means that we can specify the

distribution in O(γk) parameters rather than O(γn). We will return to this at the

end of this chapter.

Definition 2.9. Let P be a Gibbs distribution whose energy function U(x) =∑
c∈C Vc(x). The support of the potential Vc is the cardinality of the clique c. The

degree of the distribution P , denoted by deg(P ), is the maximum of the supports

of the potentials. In other words, the degree of the distribution is the size of the

largest clique that occurs in its factorization.

One may immediately see that the degree of a distribution is a measure of

the complexity of interactions in the system since it is the size of the largest set

of variables whose interaction cannot be split up in terms of smaller interactions

between subsets. One would expect this to be the hurdle in efficient algorithmic

applications.

The Hammersley-Clifford theorem relates the two types of random fields.

Theorem 2.10 (Hammersley-Clifford). X is Markov random field with respect to a

neighborhood system NG on the graph G if and only if it is a Gibbs random field with

respect to the same neighborhood system.

The theorem appears in the unpublished manuscript [HC71] and uses a cer-

tain “blackening algebra” in the proof. The first published proofs appear in

[Bes74] and [Mou74].

Note that the condition of positivity on the distribution (which is part of

the definition of a Markov random field) is essential to state the theorem in

full generality. The following example from [Mou74] shows that relaxing this
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condition allows us to build distributions having the Markov property, but not

the Gibbs property.

EXAMPLE 2.11. Consider a system of four binary variables {X1, X2, X3, X4}.
Each of the following combinations have probability 1/8, while the remaining

combinations are disallowed.

(0, 0, 0, 0) (1, 0, 0, 0) (1, 1, 0, 0) (1, 1, 1, 0)

(0, 0, 0, 1) (0, 0, 1, 1) (0, 1, 1, 1) (1, 1, 1, 1).

We may check that this distribution has the global Markov property with re-

spect to the 4 vertex cycle graph. Namely we have

X1⊥⊥X3 |X2, X4 and X2⊥⊥X4 |X1, X3.

However, the distribution does not factorize into Gibbs potentials.

2.3 Factor Graphs

Factor graphs are bipartite graphs that express the decomposition of a “global”

multivariate function into “local” functions of subsets of the set of variables.

They are a class of undirected models. The two types of nodes in a factor graph

correspond to variable nodes, and factor nodes. See Fig. 2.2.
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Figure 2.2: A factor graph showing the three clause 3-SAT formula (X1 ∨X4 ∨
¬X6) ∧ (¬X1 ∨ X2 ∨ ¬X3) ∧ (X4 ∨ X5 ∨ X6). A dashed line indicates that the

variable appears negated in the clause.
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The distribution modelled by this factor graph will show a factorization as

follows

p(x1, . . . , x6) =
1

Z
ϕ1(x1, x4, x6)ϕ2(x1, x2, x3)ϕ(x4, x5, x6), (2.1)

where Z =
∑

x1,...,x6

ϕ1(x1, x4, x6)ϕ2(x1, x2, x3)ϕ(x4, x5, x6). (2.2)

Factor graphs offer a finer grained view of factorization of a distribution

than Bayesian networks or Markov networks. One should keep in mind that

this factorization is (in general) far from being a factorization into conditionals

and does not express conditional independence. The system must embed each

of these factors in ways that are global and not obvious from the factors. This

global information is contained in the partition function. Thus, in general, these

factors do not represent conditionally independent pieces of the joint distribu-

tions. In summary, the factorization above is not the one what we are seeking —

it does not imply a series of conditional independencies in the joint distribution.

Factor graphs have been very useful in various applications, most notably

perhaps in coding theory where they are used as graphical models that un-

derlie various decoding algorithms based on forms of belief propagation (also

known as the sum-product algorithm) that is an exact algorithm for computing

marginals on tree graphs but performs remarkably well even in the presence of

loops. See [KFaL98] and [AM00] for surveys of this field. As might be expected

from the preceding comments, these do not focus on conditional independence,

but rather on algorithmic applications of local features (such as locally tree like)

of factor graphs.

A Hammersley-Clifford type theorem holds over the completion of a factor

graph. A clique in a factor graph is a set of variable nodes such that every pair

in the set is connected by a function node. The completion of a factor graph is

obtained by introducing a new function node for each clique, and connecting

it to all the variable nodes in the clique, and no others. Then, a positive distri-

bution that satisfies the global Markov property with respect to a factor graph

satisfies the Gibbs property with respect to its completion.
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2.4 The Markov-Gibbs Correspondence for Directed

Models

Consider first a directed acyclic graph (DAG), which is simply a directed graph

without any directed cycles in it. Some specific points of additional terminology

for directed graphs are as follows. If there is a directed edge from x to y, we say

that x is a parent of y, and y is the child of x. The set of parents of x is denoted

by pa(x), while the set of children of x is denoted by ch(a). The set of vertices

from whom directed paths lead to x is called the ancestor set of x and is denoted

an(x). Similarly, the set of vertices to whom directed paths from x lead is called

the descendant set of x and is denoted de(x). Note that DAGs is allowed to have

loops (and loopy DAGs are central to the study of iterative decoding algorithms

on graphical models). Finally, we often assume that the graph is equipped with

a distance function d(·, ·) between vertices which is just the length of the shortest

path between them. A set of random variables whose interdependencies may

be represented using a DAG is known as a Bayesian network or a directed Markov

field. The idea is best illustrated with a simple example.

Consider the DAG of Fig. 2.3 (left). The corresponding factorization of the

joint density that is induced by the DAG model is

p(x1, . . . , x6) = p(x1)p(x2)p(x3)p(x4 |x1)p(x5 |x2, x3, x4).

Thus, every joint distribution that satisfies this DAG factorizes as above.

Given a directed graphical model, one may construct an undirected one by

a process known as moralization. In moralization, we (a) replace a directed edge

from one vertex to another by an undirected one between the same two vertices

and (b) “marry” the parents of each vertex by introducing edges between each

pair of parents of the vertex at the head of the former directed edge. The process

is illustrated in the figure below.

In general, if we denote the set of parents of the variable xi by pa(xi), then
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Figure 2.3: The moralization of the DAG on the left to obtain the moralized

undirected graph on the right.

the joint distribution of (x1, . . . , xn) factorizes as

p(x1, . . . , xn) =
N∏
n=1

p(xn | pan).

We want, however, is to obtain a Markov-Gibbs equivalence for such graphi-

cal models in the same manner that the Hammersley-Clifford theorem provided

for positive Markov random fields. We have seen that relaxing the positivity

condition on the distribution in the Hammersley-Clifford theorem (Thm. 2.10)

cannot be done in general. In some cases however, one may remove the positiv-

ity condition safely. In particular, [LDLL90] extends the Hammersley-Clifford

correspondence to the case of arbitrary distributions (namely, dropping the pos-

itivity requirement) for the case of directed Markov fields. In doing so, they sim-

plify and strengthen an earlier criterion for directed graphs given by [KSC84].

We will use the result from [LDLL90], which we reproduce next.

Definition 2.12. A measure p admits a recursive factorization according to graph

G if there exist non-negative functions, known as kernels, kv(., .) for v ∈ V de-

fined on Λ×Λ|pa(v)| where the first factor is the state space forXv and the second

for Xpa(v), such that ∫
kv(yv, xpa(v))µv(dyv) = 1
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and

p = f.µ where f(x) =
∏
v∈V

kv(xv, xpa(v)).

In this case, the kernels kv(., xpa(v)) are the conditional densities for the dis-

tribution of Xv conditioned on the value of its parents Xpa(v) = xpa(v). Now let

Gm be the moral graph corresponding to G.

Theorem 2.13. If p admits a recursive factorization according to G, then it admits a

factorization (into potentials) according to the moral graph Gm.

D-separation

We have considered the notion of separation on undirected models and its ef-

fect on the set of conditional independencies satisfied by the distributions that

factor according to the model. For directed models, there is an analogous no-

tion of separation known as D-separation. The notion is what one would expect

intuitively if one views directed models as representing “flows” of probabilistic

influence.

We simply state the property and refer the reader to [KF09, §3.3.1] and [Bis06,

§8.2.2] for discussion and examples. Let A,B, and C be sets of vertices on a

directed model. Consider the set of all directed paths coming from a node in A

and going to a node in B. Such a path is said to be blocked if one of the following

two scenarios occurs.

1. Arrows on the path meet head-to-tail or tail-to-tail at a node in C.

2. Arrows meet head-to-head at a node, and neither the node nor any of its

descendants is in C.

If all paths from A to B are blocked as above, then C is said to D-separate A

from B, and the joint distribution must satisfy A⊥⊥B |C.
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2.5 I-maps and D-maps

We have seen that there are two broad classes of graphical models — undirected

and directed — which may be used to represent the interaction of variables

in a system. The conditional independence properties of these two classes are

obtained differently.

Definition 2.14. A graph (directed or undirected) is said to be a D-map (’depen-

dencies map’) for a distribution if every conditional independence statement of

the form A⊥⊥B |C for sets of variables A, B, and C that is satisfied by the distri-

bution is reflected in the graph. Thus, a completely disconnected graph having

no edges is trivially a D-map for any distribution.

A D-map may express more conditional independencies than the distribu-

tion possesses.

Definition 2.15. A graph (directed or undirected) is said to be a I-map (’inde-

pendencies map’) for a distribution if every conditional independence state-

ment of the form A⊥⊥B |C for sets of variables A, B, and C that is expressed

by the graph is also satisfied by the distribution. Thus, a completely connected

graph is trivially a I-map for any distribution.

A I-map may express less conditional independencies than the distribution

possesses.

Definition 2.16. A graph that is both an I-map and a D-map for a distribution

is called its P-map (’perfect man’).

In other words a P-map expresses precisely the set of conditional indepen-

dencies that are present in the distribution.

Not all distributions have P-maps. Indeed, the class of distributions having

directed P-maps is itself distinct from the class having undirected P-maps and

neither equals the class of all distributions (see [Bis06, §3.8.4] for examples).
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2.6 Parametrization

We now come to a central theme in our work. Consider a system of n binary co-

variates (X1, . . . , Xn). To specify their joint distribution p(x1, . . . , xn) completely

in the absence of any additional information, we would have to give the prob-

ability mass function at each of the 2n configurations that these n variables can

take jointly. The only constraint we have on these probability masses is that

they must sum up to 1. Thus, if we had the function value at 2n − 1 configura-

tions, we could find that at the remaining configuration. This means that in the

absence of any additional information, n covariates require 2n − 1 parameters

to specify their joint distribution.

Compare this to the case where we are provided with one critical piece of ex-

tra information — that the n variates are independent of each other. In that case,

we would need 1 parameter to specify each of their individual distributions —

namely, the probability that it takes the value 1. These n parameters then spec-

ify the joint distribution simply because the distribution factorizes completely

into factors whose scopes are single variables (namely, just the p(xi)), as a re-

sult of the independence. Thus, we go from exponentially many independent

parameters to linearly many if we know that the variates are independent.

As noted earlier, it is not often that complex systems of n interacting vari-

ables have complete independence between some subsets. What is far more fre-

quent is that there are conditional independencies between certain subsets given

some intermediate subset. In this case, the joint will factorize into factors each

of whose scope is a subset of (X1, . . . , Xn). If the factorization is into condition-

ally independent factors, each of whose scope is of size at most k , then we can

parametrize the joint distribution with at most n2n independent parameters.

We should emphasize that the factors must give us conditional independence

for this to be true. For example, factor graphs give us a factorization, but it is,

in general, not a factorization into conditional independents, and so we cannot

conclude anything about the number of independent parameters by just exam-

ining the factor graph. From our perspective, a major feature of directed graphi-

cal models is that their factorizations are already globally normalized once they
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are locally normalized, meaning that there is a recursive factorization of the

joint into conditionally independent pieces. The conditional independence in

this case is from all non-descendants, given the parents. Therefore, if each node

has at most k parents, we can parametrize the distribution using at most n2k

independent parameters. We may also moralize the graph and see this as a fac-

torization over cliques in the moralized graph. Note that such a factorization

(namely, starting from a directed model and moralizing) holds even if the dis-

tribution is not positive in contrast with those distributions which do not factor

over directed models and where we have to invoke the Hammersley-Clifford

theorem to get a similar factorization. See [KF09] for further discussion on pa-

rameterizations for directed and undirected graphical models.

Our proof scheme aims to distinguish distributions based on the size of the

irreducible direct interactions between subsets of the covariates. Namely, we

would like to distinguish distributions where there are O(n) such covariates

whose joint interaction cannot be factored through smaller interactions (having

less than O(n) covariates) chained together by conditional independencies. We

would like to contrast such distributions from others which can be so factored

through factors having only poly(log n) variates in their scope. The measure that

we have which allows us to make this distinction is the number of independent

parameters it takes to specify the distribution. When the size of the smallest

irreducible interactions is O(n), then we need O(cn) parameters where c > 1.

On the other hand, if we were able to demonstrate that the distribution factors

through interactions which always have scope poly(log n), then we would need

only O(cpoly(logn)) parameters.

Let us consider the example of a Markov random field. By Hammersley-

Clifford, it is also a Gibbs random field over the set of maximal cliques in the

graph encoding the neighborhood system of the Markov random field. This

Gibbs field comes with conditional independence assurance, and therefore, we

have an upper bound on the number of parameters it takes to specify the dis-

tribution. Namely, it is just
∑

c∈C 2|c|. Thus, if at most k < n variables interact

directly at a time, then the largest clique size would be k, and this would give
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us a more economical parameterization than the one which requires 2n − 1 pa-

rameters.

In this work, we will build machinery that shows that if a problem lies in

P, the factorization of the distribution of solutions to that problem causes it to

have economical parametrization, precisely because variables do not interact

all at once, but rather in smaller subsets in a directed manner that gives us

conditional independencies between sets that are of size poly(log n).

We now begin the process of building that machinery.

29



3. Logical Descriptions of

Computations

Work in finite model theory and descriptive complexity theory — a branch of

finite model theory that studies the expressive power of various logics in terms

of complexity classes — has resulted in machine independent characterizations

of various complexity classes. In particular, over ordered structures, there is

a precise and highly insightful characterization of the class of queries that are

computable in polynomial time, and those that are computable in polynomial

space. In order to keep the treatment relatively complete, we begin with a brief

précis of this theory. Readers from a finite model theory background may skip

this chapter.

We quickly set notation. A vocabulary, denoted by σ, is a set consisting of

finitely many relation and constant symbols,

σ = 〈R1, . . . , Rm, c1, . . . , cs〉.

Each relation has a fixed arity. We consider only relational vocabularies in that

there are no function symbols. This poses no shortcomings since functions may

be encoded as relations. A σ-structure A consists of a set A which is the universe

of A, interpretations RA for each of the relation symbols in the vocabulary, and

interpretations cA for each of the constant symbols in the vocabulary. Namely,

A = 〈A,RA
1 , . . . , R

A
m, c

A
1 , . . . , c

A
s 〉.

An example is the vocabulary of graphs which consists of a single relation

symbol having arity two. Then, a graph may be seen as a structure over this
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vocabulary, where the universe is the set of nodes, and the relation symbol is

interpreted as an edge. In addition, some applications may require us to work

with a graph vocabulary having two constants interpreted in the structure as

source and sink nodes respectively.

We also denote by σn the extension of σ by n additional constants, and de-

note by (A, a) the structure where the tuple a has been identified with these

additional constants.

3.1 Inductive Definitions and Fixed Points

The material in this section is standard, and we refer the reader to [Mos74] for

the first monograph on the subject, and to [EF06, Lib04] for detailed treatments

in the context of finite model theory. See [Imm99] for a text on descriptive com-

plexity theory. Our treatment is taken mostly from these sources, and stresses

the facts we need.

Inductive definitions are a fundamental primitive of mathematics. The idea

is to build up a set in stages, where the defining relation for each stage can be

written in the first order language of the underlying structure and uses elements

added to the set in previous stages. In the most general case, there is an under-

lying structure A = 〈A,R1, . . . , Rm〉 and a formula

φ(S,x) ≡ φ(S, x1, . . . , xn)

in the first-order language of A. The variable S is a second-order relation vari-

able that will eventually hold the set we are trying to build up in stages. At the

ξth stage of the induction, denoted by Iξφ, we insert into the relation S the tuples

according to

x ∈ Iξφ ⇔ φ(
⋃
η<ξ

Iηφ, x).

We will denote the stage that a tuple enters the relation in the induction defined

by φ by | · |Aφ . The decomposition into its various stages is a central characteristic

of inductively defined relations. We will also require that φ have only posi-

tive occurrences of the n-ary relation variable S, namely all occurrences of S be
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within the scope of an even number of negations. Such inductions are called

positive elementary. In the most general case, a transfinite induction may result.

The least ordinal κ at which Iκφ = Iκ+1
φ is called the closure ordinal of the induc-

tion, and is denoted by |φA|. When the underlying structures are finite, this is

also known as the inductive depth. Note that the cardinality of the ordinal κ is at

most |A|n.

Finally, we define the relation

Iφ =
⋃
ξ

Iξφ.

Sets of the form Iφ are known as fixed points of the structure. Relations that may

be defined by

R(x)⇔ Iφ(a,x)

for some choice of tuple a over A are known as inductive relations. Thus, induc-

tive relations are sections of fixed points.

Note that there are definitions of the set Iφ that are equivalent, but can be

stated only in the second order language of A. Note that the definition above is

1. elementary at each stage, and

2. constructive.

We will use both these properties throughout our work.

We now proceed more formally by introducing operators and their fixed

points, and then consider the operators on structures that are induced by first

order formulae. We begin by defining two classes of operators on sets.

Definition 3.1. LetA be a finite set, andP(A) be its power set. An operator F on

A is a function F : P(A)→ P(A). The operator F is monotone if it respects subset

inclusion, namely, for all subsets X, Y of A, if X ⊆ Y , then F (X) ⊆ F (Y ). The

operator F is inflationary if it maps sets to their supersets, namely, X ⊆ F (X).

Next, we define sequences induced by operators, and characterize the se-

quences induced by monotone and inflationary operators.
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Definition 3.2. LetF be an operator onA. Consider the sequence of setsF 0, F 1, . . .

defined by

F 0 = ∅,

F i+1 = F (F i).
(3.1)

This sequence (F i) is called inductive if it is increasing, namely, if F i ⊆ F i+1 for

all i. In this case, we define

F∞ :=
∞⋃
i=0

F i. (3.2)

Lemma 3.3. If F is either monotone or inflationary, the sequence (F i) is inductive.

Now we are ready to define fixed points of operators on sets.

Definition 3.4. Let F be an operator on A. The set X ⊆ A is called a fixed point

of F if F (X) = X . A fixed point X of F is called its least fixed point, denoted

LFP(F ), if it is contained in every other fixed point Y of F , namely, X ⊆ Y

whenever Y is a fixed point of F .

Not all operators have fixed points, let alone least fixed points. The Tarski-

Knaster guarantees that monotone operators do, and also provides two con-

structions of the least fixed point for such operators: one “from above” and the

other “from below.” The latter construction uses the sequences (3.1).

Theorem 3.5 (Tarski-Knaster). Let F be a monotone operator on a set A.

1. F has a least fixed point LFP(F ) which is the intersection of all the fixed points

of F . Namely,

LFP(F ) =
⋂
{Y : Y = F (Y )}.

2. LFP(F ) is also equal to the union of the stages of the sequence (F i) defined in

(3.1). Namely,

LFP(F ) =
⋃

F i = F∞.

However, not all operators are monotone; therefore we need a means of con-

structing fixed points for non-monotone operators.
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Definition 3.6. For an inflationary operator F , the sequence F i is inductive, and

hence eventually stabilizes to the fixed point F∞. For an arbitrary operator G,

we associate the inflationary operator Ginfl defined by Ginfl(Y ) , Y ∪G(Y ). The

set Ginfl
∞ is called the inflationary fixed point of G, and denoted by IFP(G).

Definition 3.7. Consider the sequence (F i) induced by an arbitrary operator F

on A. The sequence may or may not stabilize. In the first case, there is a positive

integer n such that F n+1 = F n, and therefore for all m > n, Fm = F n. In the

latter case, the sequence F i does not stabilize, namely, for all n ≤ 2|A|, F n 6=
F n+1. Now, we define the partial fixed point of F , denoted PFP(F ), as F n in the

first case, and the empty set in the second case.

3.2 Fixed Point Logics for P and PSPACE

We now specialize the theory of fixed points of operators to the case where the

operators are defined by means of first order formulae.

Definition 3.8. Let σ be a relational vocabulary, and R a relational symbol of

arity k that is not in σ. Let ϕ(R, x1, . . . , xn) = ϕ(R,x) be a formula of vocabulary

σ ∪ {R}. Now consider a structure A of vocabulary σ. The formula ϕ(R,x)

defines an operator Fϕ : P(Ak) → P(Ak) on Ak which acts on a subset X ⊆ Ak

as

Fϕ(X) = {a |A |= ϕ(X/R, a}, (3.3)

where ϕ(X/R, a}means that R is interpreted as X in ϕ.

We wish to extend FO by adding fixed points of operators of the form Fφ,

where φ is a formula in FO. This gives us fixed point logics which play a central

role in descriptive complexity theory.

Definition 3.9. Let the notation be as above.

1. The logic FO(IFP) is obtained by extending FO with the following forma-

tion rule: ifϕ(R,x) is a formula and t a k-tuple of terms, then [IFPR,xϕ(R,x)](t)
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is a formula whose free variables are those of t. The semantics are given

by

A |= [IFPR,xϕ(R,x)](a) iff a ∈ IFP(Fϕ).

2. The logic FO(PFP) is obtained by extending FO with the following forma-

tion rule: ifϕ(R,x) is a formula and t a k-tuple of terms, then [PFPR,xϕ(R,x)](t)

is a formula whose free variables are those of t. The semantics are given

by

A |= [PFPR,xϕ(R,x)](a) iff a ∈ PFP(Fϕ).

We cannot define the closure of FO under taking least fixed points in the

above manner without further restrictions since least fixed points are guaran-

teed to exist only for monotone operators, and testing for monotonicity is un-

decidable. If we were to form a logic by extending FO by least fixed points

without further restrictions, we would obtain a logic with an undecidable syn-

tax. Hence, we make some restrictions on the formulae which guarantee that

the operators obtained from them as described by (3.3) will be monotone, and

thus will have a least fixed point. We need a definition.

Definition 3.10. Let notation be as earlier. Let ϕ be a formula containing a rela-

tional symbol R. An occurrence of R is said to be positive if it is under the scope

of an even number of negations, and negative if it is under the scope of an odd

number of negations. A formula is said to be positive in R if all occurrences of R

in it are positive, or there are no occurrences of R at all. In particular, there are

no negative occurrences of R in the formula.

Lemma 3.11. Let notation be as earlier. If the formula ϕ(R,x) is positive in R, then

the operator obtained from ϕ by construction (3.3) is monotone.

Now we can define the closure of FO under least fixed points of operators

obtained from formulae that are positive in a relational variable.
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Definition 3.12. The logic FO(LFP) is obtained by extending FO with the fol-

lowing formation rule: if ϕ(R,x) is a formula that is positive in the k-ary rela-

tional variableR, and t is a k-tuple of terms, then [LFPR,xϕ(R,x)](t) is a formula

whose free variables are those of t. The semantics are given by

A |= [LFPR,xϕ(R,x)](a) iff a ∈ LFP(Fϕ).

As earlier, the stage at which the tuple a enters the relation R is denoted by

|a|Aϕ, and inductive depths are denoted by |ϕA|. This is well defined for least

fixed points since a tuple enters a relation only once, and is never removed

from it after. In fixed points (such as partial fixed points) where the underlying

formula is not necessarily positive, this is not true. A tuple may enter and leave

the relation being built multiple times.

Next, we informally state two well-known results on the expressive power

of fixed point logics. First, adding the ability to do simultaneous induction

over several formulae does not increase the expressive power of the logic, and

secondly FO(IFP) = FO(LFP) over finite structures. See [Lib04, §10.3, p. 184] for

details.

We have introduced various fixed point constructions and extensions of first

order logic by these constructions. We end this section by relating these log-

ics to various complexity classes. These are the central results of descriptive

complexity theory.

Fagin [Fag74] obtained the first machine independent logical characteriza-

tion of an important complexity class. Here, ∃SO refers to the restriction of

second-order logic to formulae of the form

∃X1 · · · ∃Xmϕ,

where ϕ does not have any second-order quantification.

Theorem 3.13 (Fagin).

∃SO = NP.

Immerman [Imm82] and Vardi [Var82] obtained the following central result

that captures the class P on ordered structures.
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Theorem 3.14 (Immerman-Vardi). Over finite, ordered structures, the queries ex-

pressible in the logic FO(LFP) are precisely those that can be computed in polynomial

time. Namely,

FO(LFP) = P.

A characterization of PSPACE in terms of PFP was obtained in [AV91,

Var82].

Theorem 3.15 (Abiteboul-Vianu, Vardi). Over finite, ordered structures, the queries

expressible in the logic FO(PFP) are precisely those that can be computed in polynomial

space. Namely,

FO(PFP) = PSPACE.

Note: We will often use the term LFP generically instead of FO(LFP) when we

wish to emphasize the fixed point construction being performed, rather than the

language.
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4. The Link Between Polynomial

Time Computation and Conditional

Independence

In Chapter 2 we saw how certain joint distributions that encode interactions

between collections of variables “factor through” smaller, simpler interactions.

This necessarily affects the type of influence a variable may exert on other vari-

ables in the system. Thus, while a variable in such a system can exert its influ-

ence throughout the system, this influence must necessarily be bottlenecked by

the simpler interactions that it must factor through. In other words, the influ-

ence must propagate with bottlenecks at each stage. In the case where there are

conditional independencies, the influence can only be “transmitted through”

the values of the intermediate conditioning variables.

In this chapter, we will uncover a similar phenomenon underlying the log-

ical description of polynomial time computation on ordered structures. The

fundamental observation is the following:

Least fixed point computations “factor through” first order computations,

and so limitations of first order logic must be the source of the bottleneck at

each stage to the propagation of information in such computations.

The treatment of LFP versus FO in finite model theory centers around the fact

that FO can only express local properties, while LFP allows non-local properties

such as transitive closure to be expressed. We are taking as given the non-local

capability of LFP, and asking how this non-local nature factors at each step, and what is

the effect of such a factorization on the joint distribution of LFP acting upon ensembles.
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Fixed point logics allow variables to be non-local in their influence, but this

non-local influence must factor through first order logic at each stage. This is

a very similar underlying idea to the statistical mechanical picture of random

fields over spaces of configurations that we saw in Chapter 2, but comes cloaked

in a very different garb — that of logic and operators. The sequence (F i
ϕ) of op-

erators that construct fixed points may be seen as the propagation of influence

in a structure by means of setting values of “intermediate variables”. In this

case, the variables are set by inducting them into a relation at various stages

of the induction. We want to understand the stage-wise bottleneck that a fixed

point computation faces at each step of its execution, and tie this back to no-

tions of conditional independence and factorization of distributions. In order

to accomplish this, we must understand the limitations of each stage of a LFP

computation and understand how this affects the propagation of long-range in-

fluence in relations computed by LFP. Namely, we will bring to bear ideas from

statistical mechanics and message passing to the logical description of compu-

tations.

It will be beneficial to state this intuition with the example of transitive clo-

sure.

EXAMPLE 4.1. The transitive closure of an edge in a graph is the standard exam-

ple of a non-local property that cannot be expressed by first order logic. It can

be expressed in FO(LFP) as follows. Let E be a binary relation that expresses

the presence of an edge between its arguments. Then we can see that iterating

the positive first order formula ϕ(R, x, y) given by

ϕ(R, x, y) ≡ E(x, y) ∨ ∃z(E(x, z) ∧R(z, y)).

builds the transitive closure relation in stages.

Notice that the decision of whether a vertex enters the relation is based on

the immediate neighborhood of the vertex. In other words, the relation is built

stage by stage, and at each stage, vertices that have entered a relation make

other vertices that are adjacent to them eligible to enter the relation at the next

stage. Thus, though the resulting property is non-local, the information flow used to
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compute it is stage-wise local. The computation factors through a local property

at each stage, but by chaining many such local factors together, we obtain the

non-local relation of transitive closure. This picture relates to a Markov random

field, where such local interactions are chained together in a way that variables

can exert their influence to arbitrary lengths, but the factorization of that influ-

ence (encoded in the joint distribution) reveals the stage-wise local nature of the

interaction. There are important differences however — the flow of LFP com-

putation is directed, whereas a Markov random field is undirected, for instance.

We have used this simple example just to provide some preliminary intuition.

We will now proceed to build the requisite framework.

4.1 The Limitations of LFP

Many of the techniques in model theory break down when restricted to finite

models. A notable exception is the Ehrenfeucht-Fraı̈ssé game for first order

logic. This has led to much research attention to game theoretic characteriza-

tions of various logics. The primary technique for demonstrating the limitations

of fixed point logics in expressing properties is to consider them a segment of

the logic Lk∞ω , which extends first order logic with infinitary connectives, and

then use the characterization of expressibility in this logic in terms of k-pebble

games. This is however not useful for our purpose (namely, separating P from

NP) since NP ⊆ PSPACE and the latter class is captured by PFP, which is

also a segment of Lk∞ω .

One of the central contributions of our work is demonstrating a completely

different viewpoint of LFP computations in terms of the concepts of conditional

independence and factoring of distributions, both of which are fundamental to

statistics and probability theory. In order to arrive at this correspondence, we

will need to understand the limitations of first order logic. Least fixed point

is an iteration of first order formulas. The limitations of first order formulae

mentioned in the previous section therefore appear at each step of a least fixed

point computation.
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Viewing LFP as “stage-wise first order” is central to our analysis. Let us

pause for a while and see how this fits into our global framework. We are in-

terested in factoring complex interactions between variables into their smallest

constituent irreducible factors. Viewed this way, LFP has a natural factorization

into its stages, which are all described by first order formulae.

Let us now analyze the limitations of the LFP computation through this

viewpoint.

4.1.1 Locality of First Order Logic

The local properties of first order logic have received considerable research at-

tention and expositions can be found in standard references such as [Lib04, Ch.

4], [EF06, Ch. 2], [Imm99, Ch. 6]. The basic idea is that first order formulae can

only “see” up to a certain distance away from their free variables. This distance

is determined by the quantifier rank of the formula.

The idea that first order formulae are local has been formalized in essen-

tially two different ways. This has led to two major notions of locality — Hanf

locality [Han65] and Gaifman locality [Gai82]. Informally, Hanf locality says

that whether or not a first order formula ϕ holds in a structure depends only on

its multiset of isomorphism types of spheres of radius r. Gaifman locality says

that whether or not ϕ holds in a structure depends on the number of elements

of that structure having pairwise disjoint r-neighborhoods that fulfill first order

formulae of quantifier depth d for some fixed d (which depends on ϕ). Clearly,

both notions express properties of combinations of neighborhoods of fixed size.

In the literature of finite model theory, these properties were developed to

deal with cases where the neighborhoods of the elements in the structure had

bounded diameters. In particular, some of the most striking applications of

such properties are in graphs with bounded degree, such as the linear time al-

gorithm to evaluate first order properties on bounded degree graphs [See96].

In contrast, we will use some of the normal forms developed in the context of

locality properties in finite model theory, but in the scenario where neighbor-

hoods of elements have unbounded diameter. Thus, it is not only the locality
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that is of interest to us, but the exact specification of the finitary nature of the

first order computation. We will see that what we need is that first order logic

can only exploit a bounded number of local properties. We will need both these

properties in our analysis.

Recall the notation and definitions from the previous chapter. We need some

definitions in order to state the results.

Definition 4.2. The Gaifman graph of a σ-structure A is denoted by GA and de-

fined as follows. The set of nodes of GA is A. There is an edge between two

nodes a1 and a2 in GA if there is a relation R in σ and a tuple t ∈ RA such that

both a1 and a2 appear in t.

With the graph defined, we have a notion of distance between elements ai, aj
of A, denoted by d(ai, aj), as simply the length of the shortest path between ai

and aj in GA. We extend this to a notion of distance between tuples from A as

follows. Let a = (a1, . . . , an) and b = (b1, . . . , bm). Then

dA(a,b) = min{dA(ai, bj) : 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

There is no restriction on n and m above. In particular, the definition above

also applies to the case where either of them is equal to one. Namely, we have

the notion of distance between a tuple and a singleton element. We are now

ready to define neighborhoods of tuples. Recall that σn is the expansion of σ by

n additional constants.

Definition 4.3. Let A be a σ-structure and let a be a tuple over A. The ball of

radius r around a is a set defined by

BA
r (a) = {b ∈ A : dA(a, b) ≤ r}.

The r-neighborhood of a in A is the σn-structureNA
r (a) whose universe isBA

r (a);

each relation R is interpreted as RA restricted to BA
r (a); and the n additional

constants are interpreted as a1, . . . , an.

We recall the notion of a type. Informally, if L is a logic (or language), the L-

type of a tuple is the sum total of the information that can be expressed about it

42



4. THE LINK BETWEEN POLYNOMIAL TIME COMPUTATION AND
CONDITIONAL INDEPENDENCE 43

in the language L. Thus, the first order type of am-tuple in a structure is defined

as the set of all FO formulae having m free variables that are satisfied by the

tuple. Over finite structures, this notion is far too powerful since it characterizes

the structure (A, a) up to isomorphism. A more useful notion is the local type of a

tuple. In particular, a neighborhood is a σn-structure, and a type of a neighborhood

is an equivalence class of such structures up to isomorphism. Note that any

isomorphism between NA
r (a1, . . . , an) and NB

r (b1, . . . , bn) must send ai to bi for

1 ≤ i ≤ n.

Definition 4.4. Notation as above. The local r-type of a tuple a in A is the type of

a in the substructure induced by the r-neighborhood of a in A, namely in Nr(a).

In what follows, we may drop the superscript if the underlying structure is

clear. The following three notions of locality are used in stating the results.

Definition 4.5. 1. Formulas whose truth at a tuple a depends only on Br(a)

are called r-local. In other words, quantification in such formulas is re-

stricted to the structure Nr(x).

2. Formulas that are r-local around their variables for some value of r are

said to be local.

3. Boolean combinations of formulas that are local around the various coor-

dinates xi of x are said to be basic local.

As mentioned earlier, there are two broad flavors of locality results in lit-

erature – those that follow from Hanf’s theorem, and those that follow from

Gaifman’s theorem. The first relates two different structures.

Theorem 4.6 ([Han65]). Let A,B be σ-structures and let m ∈ N . Suppose that

for some e ∈ N, the 3m-balls in A and B have less than e elements, and for each 3m-

neighborhood type τ , either of the following holds.

1. Both A and B have the same number of elements of type τ .

2. Both A and B have more than me elements of type τ .
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Then A and B satisfy the same first order formulae up to quantifier rank m, written

A ≡m B.

Note that in clause 1 above, the number of elements may be zero. In other

words, the same set of types may be absent in both structures.

The Hanf locality lemma for formulae having a single free variable has a

simple form and is an easy consequence of Thm. 4.6.

Lemma 4.7. Notation as above. Let ϕ(x) be a formula of quantifier depth q. Then there

is a radius r and threshold t such that if A and B have the same multiset of local types

up to threshold t, and the elements a ∈ A and b ∈ B have the same local type up to

radius r, then

A |= ϕ(a)↔ B |= ϕ(b).

See [Lin05] for an application to computing simple monadic fixed points on

structures of bounded degree in linear time.

Next we come to Gaifman’s version of locality.

Theorem 4.8 ([Gai82]). Every FO formula ϕ(x) over a relational vocabulary is equiv-

alent to a Boolean combination of

1. local formula around x, and

2. sentences of the form

∃x1, . . . , xs

(
s∧
i=1

φ(xi) ∧
∧

1≤i≤j≤s

d>2r(xi, xj)

)
,

where the φ are r-local.

In words, for every first order formula, there is an r such that the truth of the

formula on a structure depends only on the number of elements having disjoint

r-neighborhoods that satisfy certain local formulas. This again expresses the

bounded number of local properties feature that limits first order logic.

The following normal form for first order logic that was developed in an

attempt to merge some of the ideas from Hanf and Gaifman locality.
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Theorem 4.9 ([SB99]). Every first-order sentence is logically equivalent to one of the

form

∃x1 · · · ∃xl∀yϕ(x, y),

where ϕ is local around y.

4.2 Simple Monadic LFP and Conditional Indepen-

dence

In this section, we exploit the limitations described in the previous section to

build conceptual bridges from least fixed point logic to the Markov-Gibbs pic-

ture of the preceding section. At first, this may seem to be an unlikely union. But

we will establish that there are fundamental conceptual relationships between

the directed Markovian picture and least fixed point computations. The key is

to see the constructions underlying least fixed point computations through the

lens of influence propagation and conditional independence. In this section,

we will demonstrate this relationship for the case of simple monadic least fixed

points. Namely, a FO(LFP) formula without any nesting or simultaneous induc-

tion, and where the LFP relation being constructed is monadic. In later sections,

we show how to deal with complex fixed points as well.

We wish to build a view of fixed point computation as an information propa-

gation algorithm. In order to do so, let us examine the geometry of information

flow during an LFP computation. At stage zero of the fixed point computation,

none of the elements of the structure are in the relation being computed. At the

first stage, some subset of elements enters the relation. This changes the local

neighborhoods of these elements, and the vertices that lie in these local neigh-

borhoods change their local type. Due to the global changes in the multiset of

local types, more elements in the structure become eligible for inclusion into the

relation at the next stage. This process continues, and the changes “propagate”

through the structure. Thus, the fundamental vehicle of this information propagation

is that a fixed point computation ϕ(R, x) changes local neighborhoods of elements at
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each stage of the computation.

This propagation is

1. directed, and

2. relies on a bounded number of local neighborhoods at each stage.

In other words, we observe that

The influence of an element during LFP computation propagates in a simi-

lar manner to the influence of a random variable in a directed Markov field.

This correspondence is important to us. Let us try to uncover the under-

lying principles that cause it. The directed property comes from the positivity

of the first order formula that is being iterated. This ensures that once an ele-

ment is inserted into the relation that is being computed, it is never removed.

Thus, influence flows in the direction of the stages of the LFP computation. Fur-

thermore, this influence flow is local in the following sense: the influence of an

element can propagate throughout the structure, but only through its influence

on various local neighborhoods.

This correspondence is most striking in the case of bounded degree struc-

tures. In that case, we have only O(1) local types.

Lemma 4.10. On a graph of bounded degree, there is a fixed number of non-isomorphic

neighborhoods with radius r. Consequently, there are only a fixed number of local r-

types.

In order to determine whether an element in a structure satisfies a first order

formula we need (a) the multiset of local r-types in the structure (also known

as its global type) for some value of r, and (b) the local type of the element.

Furthermore, by threshold Hanf, we only need to know the multiset of local

types up to a certain threshold.

For large enough structures, we will cross the Hanf threshold for the multi-

set of r-types. At this point, we will be making a decision of whether an element

enters the relation based solely on its local r-type. This type potentially changes
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with each stage of the LFP. At the time when this change renders the element

eligible for entering the relation, it will do so. Once it enters the relation, it

changes the local r-type of all those elements which lie within a r-neighborhood

of it, and such changes render them eligible, and so on. This is how the compu-

tation proceeds, in a purely stage-wise local manner. This is a Markov property:

the influence of an element upon another must factor entirely through the local

neighborhood of the latter.

In the more general case where degrees are not bounded, we still have fac-

toring through local neighborhoods, except that we have to consider all the lo-

cal neighborhoods in the structure. However, here the bounded nature of FO

comes in. The FO formula that is being iterated can only express a property

about some bounded number of such local neighborhoods. For example, in

the Gaifman form, there are s distinguished disjoint neighborhoods that must

satisfy some local condition.

Remark 4.11. The same concept can be expressed in the language of sufficient

statistics. Namely, knowing some information about certain local neighbor-

hoods renders the rest of the information about variable values that have en-

tered the relation in previous stages of the graph superfluous. In particular,

Gaifman’s theorem says that for first order properties, there exists a sufficient

statistic that is gathered locally at a bounded number of elements. Knowing this statis-

tic gives us conditional independence from the values of other elements that

have already entered the relation previously, but not from elements that will

enter the relation subsequently. This is similar to the directed Markov picture

where there is conditional independence of any variable from non-descendants

given the value of the parents.

At this point, we have exhibited a correspondence between two apparently

very different formalisms. This correspondence is illustrated in Fig. 4.1.
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a larger directed model called the ENSP 
(developed in Chapter 7)
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Figure 4.1: The LFP computation process viewed as conditional independen-

cies.
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4.3 Conditional Independence in Complex Fixed Points

In the previous sections, we showed that the natural “factorization” of LFP into

first order logic, coupled with the bounded local property of first order logic can

be used to exhibit conditional independencies in the relation being computed.

But the argument we provided was for simple fixed points having one free

variable, namely, for monadic least fixed points. How can we show that this

picture is the same for complex fixed points? We accomplish this in stages.

1. First, we use the transitivity theorem for fixed point logic to move nested

fixed points into simultaneous fixed points without nesting.

2. Next, we use the simultaneous induction lemma for fixed point logic to

encode the relation to be computed as a “section” of a single LFP relation

of higher arity.

3. At this point, the picture of the preceding sections applies, except that we

have to bookkeep for a k-ary relation that is being computed. The prop-

erty of “bounded number of local neighborhoods” holds at each stage,

except the conditions on the neighborhoods could be expressed in terms

of k coordinates instead of just one.

Alternatively, we could work over a product structure where LFP cap-

tures the class of polynomial time computable queries. In other words,

we have to work in a structure whose elements are k-tuples of our origi-

nal structure. In this way, a k-ary LFP over the original structure would be

a monadic LFP over this structure.

Steps 1 and 2 involve standard constructions in finite model theory, which

we recall in Appendix A. See also [EF06, §8.2]. In order to accomplish step 3, we

simply have to ensure that our original structure has a relation that allows an

order to be established on k-tuples. In particular this does not pose a problem

for encoding instances of k-SAT. The basic nature of information gathering and

processing in LFP does not change when the arity of the computation rises. It

merely adds the ability to gather polynomially more information at each stage,
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but this information is still “bounded number of local neighborhoods at each

stage.”

Remark 4.12. Note that there are elegant ways to work with the space of equiva-

lence classes of k-tuples with equivalence under first order logic with k-variables.

For instance, one can consider a construction known as the canonical structure

due originally to [DLW95] who used it to provide a model theoretic proof of

the important theorem in [AV95] that P = PSPACE if and only if LFP = PFP.

Note that this is for all structures, not just for ordered structures.

The issue one faces is that there is a linear order on the canonical structure,

which renders the Gaifman graph trivial (totally connected). See [Lib04, §11.5]

for more details on canonical structures. The simple scheme described above

suffices for our purposes.

4.4 Aggregate Properties of LFP over Ensembles

We have shown that any polynomial time computation will update its relation

according to a certain Markov type property on the space of k-types of the un-

derlying structure, after extracting a statistic from the local neighborhoods of

the underlying structure. Thus far, there is no probabilistic picture, or a distri-

bution that we can analyze. We are only describing a fully deterministic com-

putation.

The distribution we seek will arise when we examine the aggregate behav-

ior of LFP over ensembles of structures that come from ensembles of constraint

satisfaction problems (CSPs) such as random k-SAT. When we examine the

properties in the aggregate of LFP running over ensembles, we will find that the

“bounded number of local” property of each stage of LFP computation mani-

fests as conditional independencies in the distribution. This gives us the setting

where we can exploit the full machinery of graphical models of Chapter 2.

Before we examine the distributions arising from LFP acting on ensembles

of structures, we will bring in ideas from statistical physics into the proof. We

begin this in the next chapter.
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5. The 1RSB Ansatz of Statistical

Physics

5.1 Ensembles and Phase Transitions

The study of random ensembles of various constraint satisfaction problems

(CSPs) is over two decades old, dating back at least to [CF86]. While a given

CSP — say, 3-SAT— might be NP-complete, many instances of the CSP might

be quite easy to solve, even using fairly simple algorithms. Furthermore, such

“easy” instances lay in certain well defined regimes of the CSP, while “harder”

instances lay in clearly separated regimes. Thus, researchers were motivated to

study randomly generated ensembles of CSPs having certain parameters that

would specify which regime the instances of the ensemble belonged to. We will

see this behavior in some detail for the specific case of the ensemble known as

random k-SAT.

An instance of k-SAT is a propositional formula in conjunctive normal form

Φ = C1 ∧ C2 ∧ · · · ∧ Cm

having m clauses Ci, each of whom is a disjunction of k literals taken from n

variables {x1, . . . , xn}. The decision problem of whether a satisfying assignment

to the variables exists is NP-complete for k ≥ 3. The ensemble known as ran-

dom k-SAT consists of instances of k-SAT generated randomly as follows. An

instance is generated by drawing each of the m clauses {C1, . . . , Cm} uniformly

from the 2k
(
n
k

)
possible clauses having k variables. The entire ensemble of ran-

dom k-SAT having m clauses over n literals will be denoted by SATk(n,m),
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and a single instance of this ensemble will be denoted by Φk(n,m). The clause

density, denoted by α and defined as α := m/n is the single most important

parameter that controls the geometry of the solution space of random k-SAT.

Thus, we will mostly be interested in the case where every formula in the en-

semble has clause density α. We will denote this ensemble by SATk(n, α), and

an individual formula in it by Φk(n, α).

Random CSPs such as k-SAT have attracted the attention of physicists be-

cause they model disordered systems such as spin glasses where the Ising spin of

each particle is a binary variable (”up” or “down”) and must satisfy some con-

straints that are expressed in terms of the spins of other particles. The energy of

such a system can then be measured by the number of unsatisfied clauses of a

certain k-SAT instance, where the clauses of the formula model the constraints

upon the spins. The case of zero energy then corresponds to a solution to the

k-SAT instance. The following formulation is due to [MZ97]. First we trans-

late the Boolean variables xi to Ising variables Si in the standard way, namely

Si = −(−1)xi . Then we introduce new variables Cli as follows. The variable Cli
is equal to 1 if the clause Cl contains xi, it is −1 if the clause contains ¬xi, and is

zero if neither appears in the clause. In this way, the sum
∑n

i=1CliSi measures

the satisfiability of clause Cl. Specifically, if
∑n

i=1CliSi − k > 0, the clause is

satisfied by the Ising variables. The energy of the system is then measured by

the Hamiltonian

H =
m∑
i=1

δ(
n∑
i=1

CliSi,−K).

Here δ(i, j) is the Kronecker delta. Thus, satisfaction of the k-SAT instance

translates to vanishing of this Hamiltonian. Statistical mechanics then offers

techniques such as replica symmetry, to analyze the macroscopic properties of

this ensemble.

Also very interesting from the physicist’s point of view is the presence of a

sharp phase transition [CKT91, MSL92] (see also [KS94]) between satisfiable and

unsatisfiable regimes of random k-SAT. Namely, empirical evidence suggested

that the properties of this ensemble undergoes a clearly defined transition when

the clause density is varied. This transition is conjectured to be as follows. For

52



5. THE 1RSB ANSATZ OF STATISTICAL PHYSICS 53

each value of k, there exists a transition threshold αc(k) such that with proba-

bility approaching 1 as n→∞ (called the Thermodynamic limit by physicists),

• if α < αc(k), an instance of random k-SAT is satisfiable. Hence this region

is called the SAT phase.

• If α > αc(k), an instance of random k-SAT is unsatisfiable. This region is

known as the unSAT phase.

There has been intense research attention on determining the numerical value

of the threshold between the SAT and unSAT phases as a function of k. [Fri99]

provides a sharp but non-uniform construction (namely, the value αc is a func-

tion of the problem size, and is conjectured to converge as n → ∞). Functional

upper bounds have been obtained using the first moment method [MA02] and

improved using the second moment method [AP04] that improves as k gets

larger.

5.2 The d1RSB Phase

More recently, another thread on this crossroad has originated once again from

statistical physics and is most germane to our perspective. This is the work in

the progression [MZ97], [BMW00], [MZ02], and [MPZ02] that studies the evo-

lution of the solution space of random k-SAT as the constraint density increases

towards the transition threshold. In these papers, physicists have conjectured

that there is a second threshold that divides the SAT phase into two — an “easy”

SAT phase, and a “hard” SAT phase. In both phases, there is a solution with

high probability, but while in the easy phase one giant connected cluster of

solutions contains almost all the solutions, in the hard phase this giant clus-

ter shatters into exponentially many communities that are far apart from each

other in terms of least Hamming distance between solutions that lie in distinct

communities. Furthermore, these communities shrink and recede maximally

far apart as the constraint density is increased towards the SAT-unSAT thresh-

old. As this threshold is crossed, they vanish altogether.

53



5. THE 1RSB ANSATZ OF STATISTICAL PHYSICS 54

As the clause density is increased, a picture known as the “1RSB hypothesis”

emerges that is illustrated in Fig. 5.1, and described below.

RS For α < αd, a problem has many solutions, but they all form one giant

cluster within which going from one solution to another involves flipping

only a finite (bounded) set of variables. This is the replica symmetric phase.

d1RSB At some value of α = αd which is below αc, it has been observed that

the space of solutions splits up into “communities” of solutions such that

solutions within a community are close to one another, but are far away

from the solutions in any other community. This effect is known as shat-

tering [ACO08]. Within a community, flipping a bounded finite number

of variable assignments on one satisfying takes one to another satisfying

assignment. But to go from one satisfying assignment in one community

to a satisfying assignment in another, one has to flip a fraction of the set

of variables and therefore encounters what physicists would consider an

“energy barrier” between states. This is the dynamical one step replica sym-

metry breaking phase.

unSAT Above the SAT-unSAT threshold, the formulas of random k-SAT are

unsatisfiable with high probability.

Using statistical physics methods, [KMRT+07] obtained another phase that

lies between d1RSB and unSAT. In this phase, known as 1RSB (one step replica

symmetry breaking), there is a “condensation” of the solution space into a sub-

exponential number of clusters, and the sizes of these clusters go to zero as the

transition occurs, after which there are no more solutions. This phase has not

been proven rigorously thus far to our knowledge and we will not revisit it in

this work.

The 1RSB hypothesis has been proven rigorously for high values of k. Specif-

ically, the existence of the d1RSB phase has been proven rigorously for the case

of k > 8, starting with [MMZ05] (see also [DMMZ08]) who showed the exis-

tence of clusters in a certain region of the SAT phase using first moment meth-

ods. Later, [ART06] rigorously proved that there exist exponentially many clus-
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ters in the d1RSB phase and showed that within any cluster, the fraction of

variables that take the same value in the entire cluster (the so-called frozen vari-

ables) goes to one as the SAT-unSAT threshold is approached. Further [ACO08]

obtained analytical expressions for the threshold at which the solution space of

random k-SAT (as also two other CSPs — random graph coloring and random

hypergraph 2-colorability) shatters, as well as confirmed the O(n) Hamming

separation between clusters.

αd αcα

Figure 5.1: The clustering of solutions just before the SAT-unSAT threshold.

Below αd, the space of solution is largely connected. Between αd and αc, the

solutions break up into exponentially many communities. Above αc, there are

no more solutions, which is indicated by the unfilled circle.

In summary, in the region of constraint density α ∈ [αd, αc], the solution

space is comprised of exponentially many communities of solutions which re-

quire a fraction of the variable assignments to be flipped in order to move be-

tween each other.

5.2.1 Cores and Frozen Variables

In this section, we reproduce results about the distribution of variable assign-

ments within each cluster of the d1RSB phase from [MMW07], [ART06], and

[ACO08].

We first need the notion of the core of a cluster. Given any solution in a clus-

ter, one may obtain the core of the cluster by “peeling away” variable assign-

ments that, loosely speaking occur only in clauses that are satisfied by other
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variable assignments. This process leads to the core of the cluster.

To get a formal definition, first we define a partial assignment of a set of vari-

ables (x1, . . . , xn) as an assignment of each variable to a value in {0, 1, ∗}. The

∗ assignment is akin to a “joker state” which can take whichever value is most

useful in order to satisfy the k-SAT formula.

Next, we say that a variable in a partial assignment is free when each clause

it occurs in has at least one other variable that satisfies the clause, or has as

assignment to ∗.
Finally, to obtain the core of a cluster, we repeat the following starting with

any solution in the cluster: if a variable is free, assign it a ∗.
This process will eventually lead to a fixed point, and that is the core of the

cluster. We may easily see that the core is not dependent upon the choice of the

initial solution.

What does the core of a cluster look like? Recall that the core is itself a

partial assignment, with each variable being assigned a 0, 1 or a ∗. Of obvious

interest are those variables that are assigned 0 or 1. These variables are said to be

frozen. Note that since the core can be arrived at starting from any choice of an

initial solution in the cluster, it follows that frozen variables take the same value

throughout the cluster. For example, if the variable xi takes value 1 in the core

of a cluster, then every solution lying in the cluster has xi assigned the value

1. The non-frozen variables are those that are assigned the value ∗ in the core.

These take both values 0 and 1 in the cluster. Clearly the number of ∗ variables

is a measure of the internal entropy (and therefore the size) of a cluster since it

is only these variables whose values vary within the cluster.

Apriori, we have no way to tell that the core will not be the all ∗ partial

assignment. Namely, we do not know whether there are any frozen variables at

all. However, [ART06] proved that for high enough values of k, with probability

going to 1 in the thermodynamic limit, almost every variable in a core is frozen

as we increase the clause density towards the SAT-unSAT threshold.

Theorem 5.1 ([ART06]). For every r ∈ [0, 1
2
] there is a constant kr such that for all

k ≥ kr, there exists a clause density α(k, r) < αc such that for all α ∈ [α(k, r), αc],
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asymptotically almost surely

1. every cluster of solutions of Φk(n, αn) has at least (1− r)n frozen variables,

2. fewer than rn variables take the value ∗.

We end this section with a physical picture of what forms a core. If a for-

mula Φ has a core with C clauses, then these clauses must have literals that

come from a set of at most C variables. By bounding the probability of this

event, [MMW07] obtained a lower bound on the size of cores. The bound is

linear, which means that when cores do exist ( [ART06] proved their existence

for sufficiently high k), they must involve a fraction of all the variables in the

formula. In other words, a core may be thought of as the onset of a large single

interaction of degree O(n) among the variables. As the reader may imagine af-

ter reading the previous chapters, this sort of interaction cannot be dealt with by

LFP algorithms. We will need more work to make this precise, but informally

cores are too large to pass through the bottlenecks that the stage-wise first order

LFP algorithms create.

This may also be interpreted as follows. Algorithms based on LFP can tackle

long range interactions between variables, but only when they can be factored

into interactions of degree poly(log n). The exact degree is determined by the

LFP algorithm — those that take more time to complete can deal with higher

degrees, but it is always poly(log n). But the appearance of cores is equivalent

to the onset of O(n) degree interactions which cannot be further factored into

poly(log n) degree interactions. Such large interactions, caused by increasing the

clause density sufficiently, cannot be dealt with using an LFP algorithm.

We have already noted that this is because LFP algorithms factor through

first order computations, and in a first order computation, the decision of whether

an element is to enter the relation being computed is based on information col-

lected from local neighborhoods and combined in a bounded fashion. This bot-

tleneck is too small for a core to factor through. The precise statement of this

intuitive picture will be provided in the next chapter when we build our condi-

tional independence hierarchies.
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5.2.2 Performance of Known Algorithms

We end this chapter with a brief overview of the performance of known algo-

rithms as a function of the clause density, and pointers to more detailed surveys.

Beginning with [CKT91] and [MSL92], there has been an understanding that

hard instances of random k-SAT tend to occur when the constraint density α

is near the transition threshold, and that this behavior was similar to phase tran-

sitions in spin glasses [KS94]. Now that we have surveyed the known results

about the geometry of the space of solutions in this region, we turn to the ques-

tion of how the two are related.

It has been empirically observed that the onset of the d1RSB transition seems

to coincide with the constraint density where traditional solvers tend to exhibit

exponential slowdown; see [ACO08] and [CO09]. See also [CO09] for the best

current algorithm along with a comparison of various other algorithms to it.

Thus, while both regimes in SAT have solutions with high probability, the ease

of finding a solution differs quite dramatically on traditional SAT solvers due

to a clustering of the solution space into numerous communities that are far

apart from each other in terms of Hamming distance. In particular, for clause

densities aboveO(2k/k), no algorithms are known to produce solutions in poly-

nomial time with probability Ω(1). Compare this to the SAT-unSAT threshold,

which is asymptotically 2k ln 2. Thus, well below the SAT-unSAT threshold, in

regimes where we know solutions exist, we are currently unable to find them

in polynomial time. Our work will explain that indeed, this is fundamentally a

limitation of polynomial time algorithms.

Incomplete algorithms are a class that do not always find a solution when

it exists, nor do they indicate the lack of solution except to the extent that

they were unable to find one. Incomplete algorithms are obviously very im-

portant for hard regimes of constraint satisfaction problems since we do not

have complete algorithms in these regimes that have economical running times.

More recently, a breakthrough for incomplete algorithms in this field came with

[MPZ02] who used the cavity method from spin glass theory to construct an

algorithm named survey propagation that does very well on instances of random
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k-SAT with constraint density above the aforementioned clustering threshold,

and continues to perform well very close to the threshold αc for low values of k.

Survey propagation seems to scale as n log n in this region. The algorithm uses

the 1RSB hypothesis about the clustering of the solution space into numerous

communities. The behavior of survey propagation for higher values of k is still

being researched.
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6. Random Graph Ensembles

We will use factor graphs as a convenient means to encode various properties

of the random k-SAT ensemble. In this section we introduce the factor graph

ensembles that represent random k-SAT. Our treatment of this section follows

[MM09, Chapter 9].

Definition 6.1. The random k-factor graph ensemble, denoted by Gk(n,m), consists

of graphs having n variable nodes andm function nodes constructed as follows.

A graph in the ensemble is constructed by picking, for each of the m function

nodes in the graph, a k-tuple of variables uniformly from the
(
n
k

)
possibilities

for such a k-tuple chosen from n variables.

Graphs constructed in this manner may have two function nodes connected

to the same k-tuple of variables. In this ensemble, function nodes all have de-

gree k, while the degree of the variable nodes is a random variable with expec-

tation km/n.

Definition 6.2. The random (k, α)-factor graph ensemble, denoted by Gk(n, α), con-

sists of graphs constructed as follows. For each of the
(
n
k

)
k-tuples of variables,

a function node that connects to only these k variables is added to the graph

with probability αn/
(
n
k

)
.

In this ensemble, the number of function nodes is a random variable with

expectation αn, and the degree of variable nodes is a random variable with

expectation αk.

We will be interested in the case of the thermodynamic limit of n,m → ∞
with the ratio α := m/n being held constant. In this case, both the ensembles

converge in the properties that are important to us, and both can be seen as the
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underlying factor graph ensembles to our random k-SAT ensemble SATk(n, α)

(see Chapter 5 for definitions and our notation for random k-SAT ensembles).

With the definitions in place, we are ready to describe two properties of

random graph ensembles that are pertinent to our problem.

6.1 Properties of Factor Graph Ensembles

The first property provides us with intuition on why algorithms find it so hard

to put together local information to form a global perspective in CSPs.

6.1.1 Locally Tree-Like Property

We have seen in Chapter 4 that the propagation of influence of variables during

a LFP computation is stagewise-local. This is really the fundamental limitation

of LFP that we seek to exploit. In order to understand why this is a limitation,

we need to examine what local neighborhoods of the factor graphs underly-

ing NP-complete problems like k-SAT look like in hard phases such as d1RSB.

In such phases, there are many extensive (meaning O(n)) correlations between

variables that arise due to loops of sizes O(log n) and above.

However, remarkably, such graphs are locally trivial. By that we mean that

there are no cycles in a O(1) sized neighborhood of any vertex as the size of the

graph goes to infinity [MM09, §9.5]. One may demonstrate this for the Erdos-

Renyi random graph as follows. Here, there are n vertices, and there is an edge

between any two with probability c/n where c is a constant that parametrizes

the density of the graph. Edges are “drawn” uniformly and independently of

each other. Consider the probability of a certain graph (V,E) occurring as a

subgraph of the Erdos-Renyi graph. Such a graph can occur in
(
n
|V |

)
positions.

At each position, the probability of the graph structure occurring is

p|E|(1− p)
|V |
2
−|E|.

Applying Stirling’s approximations, we see that such a graph occurs asymptot-

ically O(|V | − |E|) times. If the graph is connected, |V | ≤ |E| − 1 with equality
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only for trees. Thus, in the limit of n → ∞, finite connected graphs have van-

ishing probability of occurring in finite neighborhoods of any element.

In short, if only local neighborhoods are examined, the two ensembles Gk(n,m)

and Tk(n,m) are indistinguishable from each other.

Theorem 6.3. Let G be a randomly chosen graph in the ensemble Gk(n,m), and i

be a uniformly chosen node in G. Then the r-neighborhood of i in G converges in

distribution to Tk(n,m) as n→∞.

Let us see what this means in terms of the information such graphs divulge

locally. The simplest local property is degrees of elements. These are, of course,

available through local inspection. The next would be small connected sub-

graphs (triangles, for instance). But even this next step is not available. In

other words, such random graphs do not provide any of their global proper-

ties through local inspection at each element.

Let us think about what this implies. We know from the onset of cores and

frozen variables in the 1dRSB phase of k-SAT that there are strong correlations

between blocks of variables of size O(n) in that phase. However, these loops

are invisible when we inspect local neighborhoods of a fixed finite size, as the

problem size grows.

6.1.2 Degree Profiles in Random Graphs

The degree of a variable node in the ensemble Gk(n,m) is a random variable.

We wish to understand the distribution of this random variable. The expected

value of the fraction of variables in Gk(n,m) having degree d is the same as the

expected value that a single variable node has degree d, both being equal to

P (deg vi = d) =

(
m

d

)
pk(1− p)m−d where p =

k

d
.

In the large graph limit we get

lim
n→∞

P (deg vi = d) = e−kα
(kα)d

n !
.
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In other words, the degree is asymptotically a Poisson random variable.

A corollary is that the maximum degree of a variable node is almost surely

less than O(log n) in the large graph case.

Lemma 6.4. The maximum variable node degree in Gk(n,m) is asymptotically almost

surely O(log n). In particular, it asymptotically almost surely satisfies the following

dmax

kαe
=

z

log(z/ log z)

[
1 + Θ

(
log log z

(log z)2

)]
. (6.1)

where z = (log n)/kαe.

Proof. See [MM09, p. 184] for a discussion of this upper bound, as well as a

lower bound. �
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7. Separation of Complexity Classes

We have built a framework that connects ideas from graphical models, logic,

statistical mechanics, and random graphs. We are now ready to begin our final

constructions that will yield the separation of complexity classes.

7.1 Measuring Conditional Independence

The central concern of this work has been to understand what are the irreducible

interactions between the variables in a system — namely, those that cannot be

expressed in terms of interactions between smaller sets of variables with con-

ditional independencies between them. Such irreducible interactions can be

2-interactions (between pairs), 3-interactions (between triples), and so on, up to

n-interactions between all n variables simultaneously.

A joint distribution encodes the interaction of a system of n variables. What

would happen if all the direct interactions between variables in the system were

all of less than a certain finite range k, with k < n? In such a case, the “joint-

ness” of the covariates really would lie at a lower “level” than n. We would like

to measure the “level” of conditional independence in a system of interacting

variables by inspecting their joint distribution. At level zero of this “hierarchy”,

the covariates should be independent of each other. At level n, they are coupled

together n at a time, without the possibility of being decoupled. In this way,

we can make statements about how deeply entrenched the conditional inde-

pendence between the covariates is, or dually, about how large the set of direct

interactions between variables is.

This picture is captured by the number of independent parameters required
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to parametrize the distribution. When the largest irreducible interactions are

k-interactions, the distribution can be parametrized with n2k independent pa-

rameters. Thus, in families of distributions where the irreducible interactions

are of fixed size, the independent parameter space grows polynomially with n,

whereas in a general distribution without any conditional independencies, it

grows exponentially with n. The case of LFP lies in between — the interactions

are not of fixed size, but they grow relatively slowly.

There are some technical issues with constructing such a hierarchy to mea-

sure conditional independence. The first issue would be how to measure the

level of a distribution in this hierarchy. If, for instance, the distribution has a

directed P-map, then we could measure the size of the largest clique that ap-

pears in its moralized graph. However, as noted in Sec. 2.5, not all distributions

have such maps. We may, of course, upper and lower bound the level using

minimal I-maps and maximal D-maps for the distribution. In the case of or-

dered graphs, we should note that there may be different minimal I-maps for

the same distribution for different orderings of the variables. See [KF09, p. 80]

for an example.

The insight that allows us to resolve the issue is as follows. If we could

somehow embed the distribution of solutions generated by LFP into a larger dis-

tribution, such that

1. the larger distribution factorized recursively according to some directed

graphical model, and

2. the larger distribution had only polynomially many more variates than

the original one,

then we would have obtained a parametrization of our distribution that would

reflect the factorization of the larger distribution, and would cost us only poly-

nomially more, which does not affect us.

By pursuing the above course, we aim to demonstrate that distributions of

solutions generated by LFP lie at a lower level of conditional independence than

distributions that occur in the d1RSB phase of random k-SAT. Consequently,
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they have more economical parametrizations than the space of solutions in the

1dRSB phase does.

We will return to the task of constructing such an embedding in Sec. 7.3.

First we describe how we use LFP to create a distribution of solutions.

7.2 Generating Distributions from LFP

7.2.1 Encoding k-SAT into Structures

In order to use the framework from Chapters 3 and 4, we will encode k-SAT

formulae as structures over a fixed vocabulary.

Our vocabularies are relational, and so we need only specify the set of rela-

tions, and the set of constants. We will use three relations.

1. The first relationRC will encode the clauses that a SAT formula comprises.

Since we are studying ensembles of random k-SAT, this relation will have

arity k.

2. We need a relation in order to make FO(LFP) capture polynomial time

queries on the class of k-SAT structures. We will not introduce a linear

ordering since that would make the Gaifman graph a clique. Rather we

will include a relation such that FO(LFP) can capture all the polynomial

time queries on the structure. This will be a binary relation RE .

3. Lastly, we need a relation RP to hold “partial assignments” to the SAT

formulae. We will describe these in the Sec. 7.2.3.

4. We do not require constants.

This describes our vocabulary

σ = {RC , RE, RP}.

Next, we come to the universe. A SAT formula is defined over n variables,

but they can come either in positive or negative form. Thus, our universe will

66



7. SEPARATION OF COMPLEXITY CLASSES 67

have 2n elements corresponding to the variables x1, . . . , xn,¬x1, . . . ,¬xn. In or-

der to avoid new notation, we will simply use the same notation to indicate the

corresponding element in the universe. We denote by lower case xi the literals

of the formula, while the corresponding upper case Xi denotes the correspond-

ing variable in a model.

Finally, we need to interpret our relations in our universe. We dispense with

the superscripts since the underlying structure is clear. The relation RC will

consist of k-tuples from the universe interpreted as clauses consisting of dis-

junctions between the variables in the tuple. The relation RE will be interpreted

as an “edge” between successive variables. The relation RP will be a partial

assignment of values to the underlying variables.

Now we encode our k-SAT formulae into σ-structures in the natural way.

For example, for k = 3, the clause x1 ∨ ¬x2 ∨ ¬x3 in the SAT formula will be

encoded by inserting the tuple (x1,¬x2,¬x3) in the relation RC . Similarly, the

pairs (xi, xi+1) and (¬xi,¬xi+1), both for 1 ≤ i < n, as well as the pair (xn,¬x1)

will be in the relation RE . This chains together the elements of the structure.

The reason for the relation RE that creates the chain is that on such struc-

tures, polynomial time queries are captured by FO(LFP) [EF06, §11.2]. This is a

technicality. Recall that an order on the structure enables the LFP computation

(or the Turing machine the runs this computation) to represent tuples in a lexico-

graphical ordering. In our problem k-SAT, it plays no further role. Specifically,

the assignments to the variables that are computed by the LFP have nothing to

do with their order. They depend only on the relation RC which encodes the

clauses and the relation RP that holds the initial partial assignment that we are

going to ask the LFP to extend. In other words, each stage of the LFP is order-

invariant. It is known that the class of order invariant queries is also Gaifman

local [GS00]. However to allow LFP to capture polynomial time on the class of

encodings, we need to give the LFP something it can use to create an ordering.

We could encode our structures with a linear order, but that would make the

Gaifman graph fully connected. What we want is something weaker, that still

suffices. Thus, we encode our structures as successor-type structures through
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the relation RE . This seems most natural, since it imparts on the structure an

ordering based on that of the variables. Note also that SAT problems may also

be represented as matrices (rows for clauses, columns for variables that appear

in them), which have a well defined notion of order on them.

Ensembles of k-SAT Let us now create ensembles of σ-structures using the

encoding described above. We will start with the ensemble SATk(n, α) and

encode each k-SAT instance as a σ-structure. The resulting ensemble will be

denoted by Sk(n, α). The encoding of the problem Φk(n, α) as a σ-structure will

be denoted by Pk(n, α).

7.2.2 The LFP Neighborhood System

In this section, we wish to describe the neighborhood system that underlies the

monadic LFP computations on structures of Sk(n, α). We begin with the factor

graph, and build the neighborhood system through the Gaifman graph.

Let us recall the factor graph ensemble Gk(n,m). Each graph in this ensem-

ble encodes an instance of random k-SAT. We encode the k-SAT instance as

a structure as described in the previous section. Next, we build the Gaifman

graph of each such structure. The set of vertices of the Gaifman graph are sim-

ply the set of variable nodes in the factor graph and their negations since we

are using both variables and their negations for convenience (this is simply an

implementation detail). For instance, the Gaifman graph for the factor graph of

Fig 2.2 will have 12 vertices. Two vertices are joined by an edge in the Gaifman

graph either when the two corresponding variable nodes were joined to a single

function node (i.e., appeared in a single clause) of the factor graph or if they are

adjacent to each other in the chain that relation RE has created on the structure.

On this Gaifman graph, the simple monadic LFP computation induces a

neighborhood system described as follows. The sites of the neighborhood sys-

tem are the variable nodes. The neighborhoodNs of a site s is the set of all nodes

that lie in the r-neighborhood of a site, where r is the locality rank of the first

order formula ϕwhose fixed point is being constructed by the LFP computation.
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Finally, we make the neighborhood system into a graph in the standard way.

Namely, the vertices of the graph will be the set of sites. Each site s will be con-

nected by an edge to every other site inNs. This graph will be called the interac-

tion graph of the LFP computation. The ensemble of such graphs, parametrized

by the clause density α, will be denoted by Ik(n, α).

Note that this interaction graph has many more edges in general than the

Gaifman graph. In particular, every node that was within the locality rank

neighborhood of the Gaifman graph is now connected to it by a single edge.

The resulting graph is, therefore, far more dense than the Gaifman graph.

What is the size of cliques in this interaction graph? This is not the same as

the size of cliques in the factor graph, or the Gaifman graph, because the density

of the graph is higher. The size of the largest clique is a random variable. What

we want is an asymptotic almost sure (by this we mean with probability tending

to 1 in the thermodynamic limit) upper bound on the size of the cliques in the

distribution of the ensemble Ik(n, α).

Note: From here on, all the statements we make about ensembles should be under-

stood to hold asymptotically almost surely in the respective random ensembles. By that

we mean that they hold with probability 1 as n→∞.

Lemma 7.1. The size of cliques that appear in graphs of the ensemble Ik(n, α) are upper

bounded by poly(log n) asymptotically almost surely.

Proof. Let dmax be as in (6.1), and r be the locality rank of ϕ. The maximum

degree of a node in the Gaifman graph is asymptotically almost surely upper

bounded by dmax = O(log n). The locality rank is a fixed number (roughly equal

to 3d where d is the quantifier depth of the first order formula that is being

iterated). The node under consideration could have at most dmax others adjacent

to it, and the same for those, and so on. This gives us a coarse drmax upper bound

on the size of cliques. �

Remark 7.2. While this bound is coarse, there is not much point trying to tighten

it because any constant power factor (r in the case above) can always be in-

troduced by computing a r-ary LFP relation. This bound will be sufficient for
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us.

Remark 7.3. High degree nodes in the Gaifman graph become significant fea-

tures in the interaction graph since they connect a large number of other nodes

to each other, and therefore allow the LFP computation to access a lot of infor-

mation through a neighborhood system of given radius. It is these high degree

nodes that reduce factorization of the joint distribution since they represent di-

rect interaction of a large number of variables with each other. Note that al-

though the radii of neighborhoods are O(1), the number of nodes in them is

not O(1) due to the Poisson distribution of the variable node degrees, and the

existence of high degree nodes.

Remark 7.4. The relation being constructed is monadic, and so it does not intro-

duce new edges into the Gaifman graph at each stage of the LFP computation.

When we compute a k-ary LFP, we can encode it into a monadic LFP over a

polynomially (nk) larger product space, as is done in the canonical structure,

for instance, but with the linear order replaced by a weaker successor type rela-

tion. Therefore, we can always chose to deal with monadic LFP. This is really a

restatement of the transitivity principle for inductive definitions that says that

if one can write an inductive definition in terms of other inductively defined

relations over a structure, then one can write it directly in terms of the original

relations that existed in the structure [Mos74, p. 16].

7.2.3 Generating Distributions

The standard scenario in finite model theory is to ask a query about a structure

and obtain a Yes/No answer. For example, given a graph structure, we may ask

the query “Is the graph connected?” and get an answer.

But what we want are distributions of solutions that are computed by a pur-

ported LFP algorithm for k-SAT. This is not generally the case in finite model

theory. Intuitively, we want to generate solutions lying in exponentially many

clusters of the solution space of SAT in the d1RSB phase. How do we do this?

To generate these distributions, we will start with partial assignments to the set

70



7. SEPARATION OF COMPLEXITY CLASSES 71

of variables in the formula, and ask the question whether such a partial assign-

ment can be extended to a satisfying assignment. Since the answer to such a

question can be verified in polynomial time, such a query must be expressible

in FO(LFP) itself on our encoding of k-SAT into structures if P = NP. In fact,

through the self-reducibility of SAT, we can see that the resulting assignment

will itself be expressible as a LFP computable global relation.

Since we want to generate exponentially many such solutions, we will have

to partially assign O(n) (a small fraction) of the variables, and ask the LFP to

extend this assignment, whenever possible, to a satisfying assignment to all

variables. Thus, we now see what the relation RP in our vocabulary stands for.

It holds the partial assignment to the variables. For example, suppose we want

to ask whether the partial assignment x1 = 1, x2 = 0, x3 = 1 can be extended to

a satisfying assignment to the SAT formula, we would store this partial assign-

ment in the tuple (x1,¬x2, x3) in the relation RP in our structure.

The output satisfying assignment will be computed as a unary relation which

holds all the literals that are assigned the value 1. This means that xi is in the re-

lation if xi has been assigned the value 1 by the LFP, and otherwise ¬xi is in the

relation meaning that xi has been assigned the value 0 by the LFP computation.

This is the simplest case where the FO(LFP) formula is simple monadic. For

more complex formulas, the output will be some section of a relation of higher

arity (please see Appendix A for details), and we will view it as monadic over

a polynomially larger structure.

Now we “initialize” our structure with different partial assignments and

ask the LFP to compute complete assignments when they exist. If the partial

assignment cannot be extended, we simply abort that particular attempt and

carry on with other partial assignments until we generate enough solutions. By

“enough” we mean rising exponentially with the underlying problem size. In

this way we get a distribution of solutions that is exponentially numerous, and

we now analyze it and compare it to the one that arises in the d1RSB phase of

random k-SAT.
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7.3 Disentangling the Interactions: The ENSP Model

Now that we have a distribution of solutions computed by LFP, we would like

to examine its conditional independence characteristics. Does it factor through

any particular graphical model, for instance?

In Chapter 2, we considered various graphical models and their conditional

independence characteristics. Once again, our situation is not exactly like any

of these models. We will have to build our own, based on the principles we

have learnt. Let us first note two issues.

The first issue is that graphical models considered in literature are mostly

static. By this we mean that

1. they are of fixed size, over a fixed set of variables, and

2. the relations between the variables encoded in the models are fixed.

In short, they model fixed interactions between a fixed set of variables. Since

we wish to apply them to the setting of complexity theory, we are interested in

families of such models, with a focus on how their structure changes with the

problem size.

The second issue that faces us now is as follows. Even within a certain size n,

we do not have a fixed graph on n vertices that will model all our interactions.

The way a LFP computation proceeds through the structure will, in general,

vary with the initial partial assignment. We would expect a different “trajec-

tory” of the LFP computation for different clusters in the 1dRSB phase. So, if

one initial partial assignment landed us in cluster X, and another in cluster Y,

the way the LFP would go about assigning values to the unassigned variables

would be, in general, quite different. Even within a cluster, the trajectories

of two different initial partial assignments will not be the same, although we

would expect them to be similar. How do we deal with this situation?

In order to model this dynamic behavior, let us build some intuition first.

1. We know that there is a “directed-ness” to LFP in that elements that are

assigned values at a certain stage of the computation then go on to influ-
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ence other elements who are as yet unassigned. Thus, there is a directed

flow of influence as the LFP computation progresses. This is, for exam-

ple, different from a Markov random field distribution which has no such

direction.

2. There are two types of flows of information in a LFP computation. Con-

sider simple monadic LFP. In one type of flow, neighborhoods across the

structure influence the value an unassigned node will take. In the other

type of flow, once an element is assigned a value, it changes the neighbor-

hoods (or more precisely the local types of various other elements) in its

vicinity. Note that while the first type of flow happens during a stage of

the LFP, the second type is implicit. Namely, there is no separate stage of

the LFP where it happens. It implicitly happens once any element enters

the relation being computed.

3. Because the flow of information is as described above, we will not be able

to express it using a simple DAG on either the set of vertices, or the set of

neighborhoods. Thus, we have to consider building a graphical model on

certain larger product spaces.

4. The stage-wise nature of LFP is central to our analysis, and the various

stages cannot be bundled into one without losing crucial information.

Thus, we do need a model which captures each stage separately.

5. In order to exploit the factorization properties of directed graphical models,

and the resulting parametrization by potentials, we would like to avoid

any closed directed paths.

Let us now incorporate this intuition into a model, which we will call a

Element-Neighborhood-Stage Product Model, or ENSP model for short. This model

appears to be of independent interest. We now describe the ENSP model for

a simple monadic least fixed point computation. The model is illustrated in

Fig. 7.1. It has two types of vertices.
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Figure 7.1: The Element-Neighborhood-Stage Product (ENSP) model for LFPϕ. See

text for description.
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Element Vertices These vertices, which encode the variables of the k-SAT in-

stance, are represented by the smaller circles in Fig. 7.1. They therefore

correspond to elements in the structure (recall that elements of the struc-

ture represent the literals in the k-SAT formula). However, each variable in

our original system X1, . . . , Xn is represented by a different vertex at each stage

of the computation. Thus, each variable in the original system gives rise to

|ϕA| vertices in the ENSP model. Also recall that there are 2n elements in

the k-SAT structure, where n is the number of variables in the SAT for-

mula. However, in Fig 7.1, we have only shown one vertex per variable,

and allowed it to be colored two colors - green indicating the variable

has been assigned a value of +1, and red indicating the variable has been

assigned the value −1. Since the underlying formula ϕ that is being iter-

ated is positive, elements do not change their color once they have been

assigned.

Neighborhood Vertices These vertices, denoted by the larger circles with blue

shading in Fig. 7.1, represent the r-neighborhoods of the elements in the

structure. Just like variables, each neighborhood is also represented by a

different vertex at each stage of the LFP computation. Each of their pos-

sible values are the possible isomorphism types of the r-neighborhoods,

namely, the local r-types of the corresponding element. These vertices

may be thought of as vectors of size poly(log n) corresponding to the cliques

that occur in the neighborhood system we described in Sec. 7.2.2, or one

may think of them as a single variable taking the value of the various local

r-types.

Now we describe the stages of the ENSP. There are 2|ϕA| stages, starting

from the leftmost and terminating at the rightmost. Each stage of the LFP com-

putation is represented by two stages in the ENSP. Initially, at the start of the

LFP computation, we are in the left-most stage. Here, notice that some variable

vertices are colored green, and some red. In the figure, X4,1 is green, and Xi,1 is

red. This indicates that the initial partial assignment that we provided the LFP

had variable X4 assigned +1 and variable Xi assigned −1. In this way, a small
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fraction O(n) of the variables are assigned values. The LFP is asked to extend

this partial assignment to a complete satisfying assignment on all variables (if it

exists, and abort if not).

Let us now look at the transition to the second stage of the ENSP. At this

stage, based on the conditions expressed by the formula ϕ in terms of their

own local neighborhoods, and the existence of a bounded number of other local

neighborhoods in the structure, some elements enter the relation. This means

they get assigned +1 or −1. In the figure, the variable X3,2 takes the color green

based on information gathered from its own neighborhood N(X3,1) and two

other neighborhoods N(X2,1) and N(Xn−1,1). This indicates that at the first

stage, the LFP assigned the value +1 to the variable X3. Similarly, it assigns

the value −1 to variable Xn (remember that the first two stages in the ENSP

correspond to the first stage of the LFP computation). The vertices that do not

change state simply transmit their existing state to the corresponding vertices

in the next stage by a horizontal arrow, which we do not show in the figure in

order to avoid clutter.

Once some variables have been assigned values in the first stage, their neigh-

borhoods, and the neighborhoods in their vicinity (meaning, the neighborhoods

of other elements that are in their vicinity) change. This is indicated by the dot-

ted arrows between the second and third stages of the ENSP. Note that this

happens implicitly during LFP computation. That is why we have represented

each stage of the actual LFP computation by two stages in the ENSP. The first

stage is the explicit stage, where variables get assigned values. The second stage

is the implicit stage, where variables “update their neighborhoods” and those

neighborhoods in their vicinity. For example, once X3 has been assigned the

value +1, it updates its neighborhood and also the neighborhood of variable

X2 which lies in its vicinity (in this example). In this way, influence propagates

through the structure during a LFP computation. There are two stages of the

ENSP for each stage of the LFP. Thus, there are 2|ϕA| stages of the ENSP in all.

By the end of the computation, all variables have been assigned values, and

we have a satisfying assignment. The variables at the last stage Xi,|ϕA| are just
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the original Xi. Thus, we recover our original variables (X1, . . . , Xn) by simply

looking only at the last (rightmost in the figure) level of the ENSP.

By introducing extra variables to represent each stage of each variable and

each neighborhood in the SAT formula, we have accomplished our original

aim. We have embedded our original set of variates into a polynomially larger

product space, and obtained a directed graphical model on this larger space.

This product space has a nice factorization due to the directed graph structure.

This is what we will exploit.

Remark 7.5. The explicit stages of the ENSP also perform the task of propagating

the local constraints placed by the various factors in the underlying factor graph

outward into the larger graphical model. For example, in our case of the factors

encoding clauses of a k-SAT formula, the local constraint placed by a clause

is that the global assignment must evade exactly one restriction to a specified

set of k coordinates. For example, in the case of k = 3 the clause x1 ∨ x2 ∨
¬x3 permits all global assignments except those whose first three coordinates

are (−1,−1,+1). In contrast, if the factor were a XORSAT clause, the local

restrictions are all in the form of linear spaces, and so the global solution is an

intersection of such spaces. k-SAT asks a question about whether certain spaces

of the form

{ω : (ωi1 , . . . , ωik) 6= (ν1, . . . , νk)}

have non-empty intersections, where 1 ≤ i1 < i2 < · · · < ik ≤ n and the

prohibited νi are ±1. Note that these are O(1) local constraints per factor. In

contrast, XORSAT asks the question about whether certain linear spaces have a

non-empty intersection. Linearity is a global constraint. Of course, all messages

are coded into the formula ϕ. Thus, the end result of multiple runs of the LFP

will be a space of solutions conditioned upon the requirements. So, for instance,

if we were to try to solve XORSAT formulae, we would obtain a space that

would be linear.

Thus, we have a directed graph with 2n + n = 3n vertices at each stage,

and 2|ϕA| stages. Since the LFP completes its computation in under a fixed

polynomial number of steps, this means that we have managed to represent
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the LFP computation on a structure as a directed model using a polynomial

overhead in the number of parameters of our representation space. In other

words, by embedding the covariates into a polynomially larger space, we have

been able to put a common structure on various computations done by LFP

on them. In the ENSP model, the covariates are recovered by restricting to the

first n vertices in the bottom row, but now we have a graphical model that can

represent the underlying computation done in order to get to that final state.

Note that without embedding the covariates into a larger space, we would not

be able to place the various computations done by LFP into a single graphical

model. The insight that we can afford to incur a polynomial cost in order to

obtain a common graphical model on a larger product space was key to this

section.

7.4 Parametrization of the ENSP

Our goal is to demonstrate the following.

If LFP were able to compute solutions to the d1RSB phase of random k-SAT,

then the distribution of the entire space of solutions would have a substan-

tially simpler parametrization than we know it does.

In order to accomplish this, we need to measure the growth in the dimension of

independent parameters it requires to parametrize the distribution of solutions

that we have just computed using LFP.

In order to do this, we have embedded our variates into a polynomially

larger space that has factorization according to a directed model — the ENSP.

We have seen that the cliques in the ENSP are of size poly(log n). By employ-

ing the version of Hammersley-Clifford for directed models, Theorem 2.13, we

also know that we can parameterize the distribution by specifying a system of

potentials over its cliques, automatically ensuring conditional independence.

The directed nature of the ENSP also means that we can factor the resulting

distribution into conditional probability distributions (CPDs) at each vertex of
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the model of the form P (x | pa(x)), and then normalize each CPD. Once again,

each CPD will have scope only poly(log n). From our perspective, the major

benefit of directed graphical models is that we can do this always, without any

added positivity constraints. Recall that positivity is required in order to apply

the Hammersley-Clifford theorem to obtain factorizations for undirected mod-

els.

How do we compute the CPDs or potentials? We assign various initial par-

tial assignments to the variables as described in Sec. 7.2.3 and let the LFP com-

putations run. We only consider successful computations, namely those where

the LFP was able to extend the partial assignment to a full satisfying assignment

to the underlying k-SAT formula. We represent each stage of the LFP compu-

tation on the corresponding two stages of the ENSP and thus obtain one full

instantiation of the representation space. We do this exponentially numerous

times, and build up our local CPDs by simply recording local statistics over all

these runs. This gives us the factorization (over the expanded representation

space) of our distribution, assuming that P = NP.

The ENSP for different runs of the LFP will, in general, be different. This

is because the flow of influences through the stages of the ENSP will, in gen-

eral, depend on the initial partial assignment. What is important is that each

such model will have some properties — such as largest clique size, which de-

termines the order of the number of parameters — in common. Let us inspect

these properties that determine the parametrization of the ENSP model.

1. There are polynomially many more vertices in the ENSP model than ele-

ments in the underlying structure.

2. Lemma 7.1 gives us a poly(log n) upper bound on the size of the neigh-

borhoods. The number of local r-types whose value each neighborhood

vertex can take is 2poly(logn).

3. By Theorem 4.8 there is a fixed constant s such that there must exist s

neighborhoods in the structure satisfying certain local conditions for the

formula to hold. Remember, we are presently analyzing a single stage of
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the LFP. This again gives us poly(n) (O(ns) in this case) different possibil-

ities for each explicit stage of the ENSP. The same can also be arrived at

by utilizing the normal form of Theorem 4.9. By the previous point, each

of these possibilities can be parameterized by 2poly(logn) parameters, giving

us a total of 2poly(logn) parameters required.

4. At each implicit stage of the ENSP, we have to update the types of the

neighborhoods that were affected by the induction of elements at the pre-

vious explicit stage. There are only n neighborhoods, and each has poly(log n)

elements at most.

The ENSP is an interaction model where direct interactions are of size poly(log n),

and are chained together through conditional independencies.

Proposition 7.6. A distribution that factorizes according to the ENSP can be pa-

rameterized with 2poly(logn) independent parameters. The scope of the factors in the

parametrization grows as poly(log n).

This also underscores the principle that the description of the parameter

space is simpler because it only involves interactions between l variates at a

time directly, and then chains these together through conditional independen-

cies. In the case of the LFP neighborhood system, the size of the largest cliques

are poly(log n) for each single run of the LFP. This will not change if we were

computing using complex fixed points since the space of k-types is only poly-

nomially larger than the underlying structure.

The crucial property of the distribution of the ENSP is that it admits a recur-

sive factorization. This is what drastically reduces the parameter space required

to specify the distribution. It also allows us to parametrize the ENSP by simply

specifying potentials on its maximal cliques, which are of size poly(log n).

While the entire distribution obtained by LFP may not factor according to

any one ENSP, it is a mixture of distributions each of whom factorizes as per

some ENSP. Next, we analyze the features of such a mixture when exponen-

tially many instantiations of it are provided. As the reader may intuit, when

such a mixture is asked to provide exponentially many samples, these will show
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features of scope poly(log n). This is simply a statement about the paucity of in-

dependent parameters in the component distributions in the mixture.

7.5 Separation

The property of the ENSP that allows us to analyze the behavior of mixtures is

that it is specified by local Gibbs potentials on its cliques. In other words, a vari-

able interacts with the rest of the model only through the cliques that it is part

of. These cliques are parametrized by potentials. We may think of the cliques

as the building blocks of each ENSP. The cliques are also upper bounded in size

by poly(log n). Furthermore, a vertex may be in at most O(log n) such cliques.

Therefore, a vertex displays collective behavior only of range poly(log n). Thus,

the mixture comprises distributions that can be parametrized by a subspace of

Rpoly(logn), in contrast to requiring the larger space RO(n). This means that when

exponentially many solutions are generated, the features in the mixture will be

of size poly(log n), not of size O(n).

This explains why polynomial time algorithms fail when interactions be-

tween variable areO(n) at a time, without the possibility of factoring into smaller

pieces through conditional independencies. This also puts on rigorous ground

the empirical observation that even NP-complete problems are easy in large

regimes, and become hard only when the densities of constraints increase above

a certain threshold. This threshold is precisely the value whereO(n) interactions

first appear in almost all randomly constructed instances.

In case of random k-SAT in the d1RSB phase, these irreducible O(n) interac-

tions manifest through the appearance of cores which comprise clauses whose

variables are coupled so tightly that one has to assign them “simultaneously.”

Cores arise when a set of C = O(n) clauses have all their variables also lying in

a set of size C. Once clause density is sufficiently high, cores cannot be assigned

poly(log n) at a time, and successive such assignments chained together through

conditional independencies. Since cores do not factor through conditional inde-

pendencies, this makes it impossible for polynomial time algorithms to assign
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their variables correctly. Intuitively, variables in a core are so tightly coupled to-

gether that they can only vary jointly, without any conditional independencies

between subsets. In other words, they represent irreducible interactions of size

O(n) which may not be factored any further. In such cases, parametrization over

cliques of size only poly(log n) is insufficient to specify the joint distribution.

However, we have shown that in the ENSP model, the size of the largest such

irreducible interactions are poly(log n), not O(n). Furthermore, since the model

is directed, it guarantees us conditional independencies at the level of its largest

interactions. More precisely, it guarantees us that there will exist conditional

independencies in sets of size larger than the largest cliques in its moral graph,

which are O(poly(log n)). In other words, there will be independent variation

within cores when conditioned upon values of intermediate variables that also

lie within the core, should the core factorize as per the ENSP. This is illustrated

in Fig. 7.2. This is contradictory to the known behaviour of cores for sufficiently

high values of k and clause density in the d1RSB phase. In other words, while

the space of solutions generated by LFP has features of size poly(log n), the fea-

tures present in cores in the d1RSB phase have size O(n).

The framework we have constructed allows us to analyze the set of poly-

nomial time algorithms simultaneously, since they can all be captured by

some LFP, instead of dealing with each individual algorithm separately. It

makes precise the notion that polynomial time algorithms can take into ac-

count only interactions between variables that grow as poly(log n), not as

O(n).

At this point, we are ready to state our main theorem.

Theorem 7.7. P 6= NP.

Proof. Consider the solution space of k-SAT in the d1RSB phase for k > 8 as re-

called in Section.5.2.1. We know that for high enough values of the clause den-

sity α, we have O(n) frozen variables in almost all of the exponentially many

clusters. Let us consider the situation where these clusters were generated by a
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poly(log n) poly(log n)

Independent given 
Intermediate values

Independent given 
Intermediate values

Figure 7.2: The factorization within a core due to potentials of size poly(log n).

purported LFP algorithm for k-SAT. However, when exponentially many solu-

tions have been generated from distributions having the parametrization of the

ENSP model, we will see the effect of conditional independencies beyond range

poly(log n). Let αβγ be a representation of the variables in cliques α, β and γ,

then given a value of β, we will see independent variation over all their possible

conditional values in the variables of α and γ. If each set of such variables has

scope at most poly(log n), then this means that once more than cpoly(logn), c > 1

many distinct solutions are generated, we have non-trivial conditional distri-

butions conditioned upon values of β variables (this factor accounts for the

possible orderings within the poly(log n) variables as well). At this point, the

conditional independence ensure that we will see cross terms of the form

α1βγ1 α2βγ2 α1βγ2 α2βγ1.

Note that sinceO(n) variables have to be changed when jumping from one clus-

ter to another, we may even chose our poly(log n) blocks to be in overlaps of

these variables. This would mean that with a poly(log n) change in frozen vari-

ables of one cluster, we would get a solution in another cluster. But we know

that in the highly constrained phases of d1RSB, we need O(n) variable flips to

get from one cluster to the next. This gives us the contradiction that we seek. �

The basic question in analyzing such mixtures is: How many variables do
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we need to condition upon in order to split the distribution into conditionally

independent pieces? The answer is given by (a) the size of the largest cliques

and (b) the number of such cliques that a single variable can occur in. In our

case, these two give us a poly(log n) quantity. When exponentially many solu-

tions have been generated, there will be conditional distributions that exhibit

conditional independence between blocks of variates size poly(log n). Namely,

there will be no effect of the values of one upon those of the other. This is what

prevents the Hamming distance between solutions from being O(n). This is

shown pictorially in Fig. 7.2.

We may think of such mixtures as possessing only cpoly(logn) “channels” to

communicate directly with other variables. All long range correlations trans-

mitted in such a distribution must pass through only these many channels.

Therefore, exponentially many solutions cannot independently transmit O(n)

correlations (namely, the variables that have to be changed when jumping from

one cluster to another). Their correlations must factor through this bottleneck,

which gives us conditional independences after range poly(log n). This means

that blocks of size larger than this are now varying independently of each other

conditioned upon some intermediate variables. This gives us the cross-terms

described earlier, and prevents the Hamming distance from being O(n) on the

average over exponentially many solutions. Instead, it must be poly(log n).

We can see that due to the limited parameter space that determines each

variable, it can only display a limited behavior. This behavior is completely de-

termined by poly(log n) other variates, not by O(n) other variates. Thus, the

“jointness” in this distribution lies at a level poly(log n). This is why when

enough solutions have been generated by the LFP, the resulting distribution

will start showing features that are at most of size poly(log n). In other words,

there will be solutions that show cross-terms between features whose size is

poly(log n).

We collect some observations in the following.

Remark 7.8. The poly(log n) size of features and therefore Hamming distance

between solutions tells us that polynomial time algorithms correspond to the
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RS phase of the 1RSB picture, not to the d1RSB phase.

Remark 7.9. We can see from the preceding discussion that the number of inde-

pendent parameters required to specify the distribution of the entire solution

space in the d1RSB phase (for k > 8) rises as cn, c > 1. This is because it takes

that many parameters to specify the exponentially many O(n) variable “jumps”

between the clusters. These jumps are independent, and cannot be factored

through poly(log n) sized factors since that would mean conditional indepen-

dence of pieces of size poly(log n) and would ensure that the Hamming distance

between solutions was of that order.

Remark 7.10. Note that the central notion is that of the number of independent

parameters, not frozen variables. For example, frozen variables would occur

even in low dimensional parametrizations in the presence of additional con-

straints placed by the problem. This is what happens in XORSAT, where the

linearity of the problem causes frozen variables to occur. The frozen variables

in XORSAT do not arise due to a high dimensional parameterization, but sim-

ply because the 2-core percolates [MM09, §18.3]. Each cluster is a linear space

tagged on to a solution for the 2-core, which is also why the clusters are all of

the same size. Linear spaces always admit a simple description as the linear

span of a basis, which takes the order of log of the size of the space.

Remark 7.11. It is tempting to think that there will be such a parametrization

whenever the algorithmic procedure used to generate the solutions is stage-

wise local. This is not so. We need the added requirement that “mistakes” are

not allowed. Namely, we cannot change a decision that has been made. Other-

wise, even PFP has the stage-wise bounded local property, but it can give rise to

distributions without any conditional independence factorizations whose fac-

tors are of size poly(log n). When placed in the ENSP, we see that there is fac-

torization, but over an exponentially larger space, where clique sizes are of ex-

ponential size. One might observe that the requirement that we not make any

trial and error at all that limits LFP computations in a fundamentally different

manner than the locality of information flows. See [Put65] for an interesting

related notion of “trial and error predicates” in computability theory.
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7.6 Some Perspectives

The following perspectives are reinforced by this work.

1. The most natural object of study for constraint satisfaction problems is the

entire space of solutions. It is this space where the dependencies and inde-

pendencies that the CSP imposes upon covariates that satisfy it manifest.

2. There is an intimate relation between the geometry of the space and its

parametrization. Studying the parametrization of the space of solutions is

a worthwhile pursuit.

3. The view that an algorithm is a means to generate one solution is limited

in the sense that it is oblivious to the geometry of the space of all solutions.

It may, of course, be the appropriate approach in many applications. But

there are applications where requiring algorithms to generate numerous

solutions and approximate with increasing accuracy the entire space of

solutions seems more natural.

4. Conditional independence over factors of small scope is at the heart of re-

solving CSPs by means of polynomial time algorithms. In other words,

polynomial time algorithms succeed by successively “breaking up” the

problem into smaller subproblems that are joined to each other through

conditional independence. Consequently, polynomial time algorithms can-

not solve problems in regimes where blocks whose order is the same as the

underlying problem instance require simultaneous resolution.

5. Polynomial time algorithms resolve the variables in CSPs in a certain or-

der, and with a certain structure. This structure is important in their study.

In order to bring this structure under study, we may have to embed the

space of covariates into a larger space (as done by the ENSP).
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A. Reduction to a Single LFP

Operation

A.1 The Transitivity Theorem for LFP

We now gather a few results that will enable us to cast any LFP into one having

just one application of the LFP operator. Since we use this construction to deal

with complex fixed points, we reproduce it in this appendix. The presentation

here closely follows [EF06, Ch. 8].

The first result, known as the transitivity theorem, tells us that nested fixed

points can always be replaced by simultaneous fixed points. Let ϕ(x, X, Y ) and

ψ(y, X, Y ) be first order formulas positive in X and Y . Moreover, assume that

no individual variable free in LFPy,Y ψ(y, X, Y ) gets into the scope of a corre-

sponding quantifier or LFP operator in A.1.

[LFPx,Xϕ(x, X, [LFPy,Y ψ(y, X, Y )])]t (A.1)

Then A.1 is equivalent to a formula of the form

∃(∀)u[LFPz,Z,χ(z, Z)]u,

where χ is first order.
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A.2 Sections and the Simultaneous Induction Lemma

for LFP

Next we deal with simultaneous fixed points. Recall that simultaneous induc-

tions do not increase the expressive power of LFP. The proof utilizes a coding

procedure whereby each simultaneous induction is embedded as a section in a

single LFP operation of higher arity. First, we introduce the notion of a section.

Definition A.1. Let R be a relation of arity (k + l) on A and a ∈ Ak. Then the

a-section of R, denoted by Ra, is given by

Ra := {b ∈ Ak|R(ba)}

Next we see how sections can be used to encode multiple simultaneous op-

erators producing relations of lower arity into a single operator producing a

relation of higher arity. Let m operators F1, . . . , Fm act as follows:

F1 : (Ak1)× · · · × (Akm)→ (Ak1)

F2 : (Ak1)× · · · × (Akm)→ (Ak2)

...

Fm : (Ak1)× · · · × (Akm)→ (Akm)

(A.2)

We wish to embed these operators as sections of a “larger” operator, which

is known as their simultaneous join.

We will denote a tuple consisting only of a’s by ã. The length of ã be clear

from context.

Definition A.2. Let F1, . . . , Fm be operators acting as above. Set

k := max{k1, . . . , km}+m+ 1.

The simultaneous join of F1, . . . , Fm, denoted by J(F1, . . . , Fm), is an operator

acting as

J(F1, . . . , Fm) : (Ak)→ (Ak)
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such that for any a, b ∈ A, the ãbi-section (where the length of ã here is k −
i + 1) of the nth power of J is the nth power of the operator Fi. Concretely, the

simultaneous join is given by

J(R) :=
⋃

a,b∈A,a 6=b

((F1(Rãb1 , . . . , Rãbm)× {ãb1}) ∪ · · ·

· · · ∪ (Fm(Rãb1 , . . . , Rãbm)× {ãbm})). (A.3)

The simultaneous join operator defined above has properties we will need

to use. These are collected below.

Lemma A.3. The ith power J i of the simultaneous join operator satisfies

J i =
⋃

a,b∈A,a 6=b

((F i
1 × {ãb1}) ∪ · · · ∪ (F i

m × {ãbm})). (A.4)

The following corollaries are now immediate.

Corollary A.4. The fixed point J∞ of the simultaneous join of operators (F1, . . . , Fm)

exists if and only if their simultaneous fixed point (F∞1 , . . . , F∞m ) exists.

Corollary A.5. The simultaneous join of inductive operators is inductive.

Finally, we need to show that the simultaneous join can itself be expressed

as a LFP computation. We need formulas that will help us define sections of a

simultaneous induction. Since the sections are coded using tuples of the form

ak−i+ki+1bi, we will need formulas that can express this.

Definition A.6. For ` ≥ 1 and i = 1, . . . , `, the section formulas δli(x1, . . . , xl, v, w)

δli(x1, . . . , xl, v, w) :=


¬(v = w) ∧ (x1 = · · · = x` = v) i = 1

¬(v = w) ∧ (x1 = · · · = x`−i+1 = v) ∧

(x`−i+2 = · · · = w) i > 1.

(A.5)

For distinct a, b ∈ A, A |= δi[ãb
jab] if and only if i = j.

Now we are ready to show that simultaneous fixed-point inductions of for-

mulas can be replaced by the fixed point induction of a single formula.
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Definition A.7. Let

ϕ1(R1, . . . , Rm,x1), . . . , ϕm(R1, . . . , Rm,xm)

be formulas of LFP. As always, we letRi be a ki-ary relation and xi be a ki-tuple.

Furthermore, letϕ1, . . . , ϕm be positive inR1, . . . , Rm. Set k := max{k1, . . . , km}+
m+ 1. Define a new first order formula χJ having k variables and computing a

single k-ary relation Z by

χJ(Z, z1, . . . , zk) := ∃v∃w(¬v = w∧

((ϕ1(Zṽw1 , . . . , Zṽwm , z1, . . . , zk) ∧ δk1(z1, . . . , zk, v, w))

∨ (ϕ2(Zṽw1 , . . . , Zṽwm , z1, . . . , zk) ∧ δk2(z1, . . . , zk, v, w))

...

∨ (ϕm(Zṽw1 , . . . , Zṽwm , z1, . . . , zk) ∧ δkm(z1, . . . , zk, v, w)))) (A.6)

Then, the relation computed by the least fixed point of χJ contains all the

individual least fixed points computed by the simultaneous induction as its sec-

tions.
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